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Proteins with Selected Sequences Fold into Unique Native Conformation
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We design sequences of 80-monomer model protein which provide very low energy in the target
(“native”) structure. Then the designed sequence is subjected to lattice Monte Carlo simulation
of folding. In all runs model protein folded from random coil to the unique native conformation,
effectively “solving” the multiple minima problem. These results suggest that thermodynamically
oriented selection of sequences which makes the native conformation a pronounced deep minimum
of energy solves the problem of kinetic accessibility of this conformation as well.

PACS numbers: 87.15.Da, 61.43.—j, 64.60.Cn, 64.60.Kw

The complexity of the protein folding problem is in
the fact (often referred to as Levinthal paradox [1]) that
unique, native conformation should be chosen in the
folding process without scanning the astronomic num-
ber of possible conformations. The important question
is whether this kinetic ability of natural proteins to fold
is due to evolutionary selection of their sequences and,
if yes, how can this feature be encoded in a protein se-
quence?

The straightforward approach (tried, e.g., in [2]) would
be to take natural amino-acid sequence and simulate a
(simplified) model of a protein expecting convergence to
the native 3D conformation. However, the difficulty with
this approach is that protein sequences could have been
evolutionary designed to fold to their native structures
with some “exact” set of potentials while simulations nec-
essarily use approximate energetics [3] for which the na-
tive structure may be neither a global nor a pronounced
local minimum. It is then hard to expect any folding al-
gorithm to converge to a “native” state which may not be
distinguished by energy from many other conformations.

This suggests the idea of using protein design to study
folding of model one-domain proteins of realistic size.
The goal is to design a sequence which has very low en-
ergy in a given (arbitrary) conformation. Folding simula-
tion with the same potential function as was used at the
design stage will then reveal whether this conformation
can be reached in a reasonable time. Combination of de-
sign and folding “in one pair of hands” makes it possible
to address the basic questions of protein folding and evo-
lution separately from the problem of finding the correct
potential functions for protein simulations.

In this study we model proteins as positioned on a cu-
bic lattice. The Hamiltonian of a model protein is deter-
mined by the set coordinates of its monomers {r;} and
(quenched) sequence of monomers {o;} which denotes
the identity of each monomer. Contact approximation is
taken for the Hamiltonian,

N
E({o r]) = 5 2 UleoAti—ry), (1)
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where N is the total number of monomers and A de-
fines the contact potential between them: A(r) = 1 if
monomers are lattice neighbors and 0, otherwise. We
consider our model proteins positioned on a cubic lattice
with unit bond length.

The set of potentials U(a, 3) characterizes energies
with which a monomer of type a interacts with a
monomer of type (. First we tried two-letter se-
quences (hydrophobic-hydrophilic) like ones used in two-
dimensional lattice models of proteins [4]. However, two-
letter sequences appeared to be inappropriate for study-
ing protein folding in three-dimensional models (see be-
low). Therefore in what follows twenty-letter representa-
tion of protein sequences was used. In this case U(a, )
is a 20 x 20 matrix; as an example we used the one de-
rived by Miyazawa and Jernigan [3] from the statistical
distribution of contacts in native proteins.

In this work we studied folding of 80-monomer chains.
Following the idea to combine folding and design we
choose (arbitrarily) a target structure which is in our
case a compact conformation of a chain on the cubic lat-
tice. An example of the target structure is shown in Fig.
1.

After the target structure is picked, sequence design
should be made to find a sequence which fits the target
structure with low energy as determined according to Eq.
(1) where coordinates {r;} correspond to target confor-
mation. To this end the sequence-space Monte Carlo
(MC) procedure of design was used [5,6]. The idea of se-
quence design is very simple: For the design purposes just
view Eq. (1) as one where coordinates of the target struc-
ture {r;} are quenched but sequence variables {o;} are
annealed and Eq. (1) should be optimized with respect
to them. This leads naturally to the idea of simulated
annealing in sequence space; the procedure is straight-
forward and the details are published in [5,6].

The following argument based on the theory of het-
eropolymers allows us to estimate whether the native
(target) structure corresponds to the global energy min-
imum for the designed sequence.

We divide the set of all conformations into two groups:
the ones which have significant similarity with the tar-
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FIG. 1. An example of a compact conformation of an
80-monomer on a cubic lattice and the optimized sequence.
Amino acids of different types are shown by different gray
scale for illustrative purposes. This conformation as well as
several other conformations with their sequences (not shown)
were used as native structures in our studies. The shown
sequence was designed to have low energy in the shown con-
formation.

get structure and the remaining vast majority of confor-
mations which have marginal or no similarity with the
target structure, just like two randomly superimposed
conformations.

For conformations which are not similar to the tar-
get structure the designed sequence is effectively random
and therefore the statistics of their energies are equiv-
alent to those of a random heteropolymer. (A similar
argument was first given by Bryngelson and Wolynes in
their discussion of the “minimal frustration” model of
protein folding [7].)

The important feature of random heteropolymers is
that there exists a threshold energy E. such that the
probability to find conformations with energy well below
E, is extremely small [8-11]. Therefore the successful
design should create sequences whose energy En in the
native conformation is well below E.: In this case ran-
dom conformations (structurally nonsimilar to the native
state) will not have energies close to that of the native
conformation and therefore will not serve as deep ener-
getic traps for folding.

Ey is known directly from Eq. (1) for the designed se-
quence. To estimate E, we use the replica mean-field the-
ory of heteropolymers [8-11). E. = Ey — JN(21lnv)%/2,
where v is the number of conformations per monomer.
The important parameters Ey and J are the mean and
the standard deviation of interaction energies. Since we
are using parameters which are obtained from protein
statistics, we have only relative energies and do not know
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the absolute energy scale for those parameters. So we use
the energy unit at which J = 1. This requires multipli-
cation of all parameters by a scaling factor. To deter-
mine this scaling factor we generated a set of 1000 ran-
dom sequences (all having the same amino-acid composi-
tion) and fitted them into the target structure adjusting
the scaling factor so that J? = ((E?) — (E)?)/N = 1.
(E) = Ey and () denotes averaging over the set of ran-
dom sequences. We took v = 3.5 which takes into ac-
count excluded volume and certain degree of compact-
ness of unfolded conformations for which variance of in-
teractions J is estimated. The estimates were done for
two sets of parameters: “two-letter” code with monomers
of two types (“H” and “P”) so that U(H,H) = -1:
U(H,P) = U(P,P) = 0 and the twenty-letter set of
Miyazawa and Jernigan. The amino-acid composition
was set to be 50% H and 50% P monomers for two-
letter chains and corresponding to averaged composition
in proteins [12] for the twenty-letter set. The results for
80-monomer chains are given below.

(1) Two-letter heteropolymers: E. = —72.3, Ey =
—61. The model is not specific enough to have unique
structure: All possible energy levels are multiple degen-
erate. No folding to unique structure is possible in that
case.

(2) Twenty-letter parameters: E. = —123.6, Ey =
—156.5. The estimated gap is pronounced, =~ 23T at the
temperature at which most of the simulations have been
done. In all that follows twenty types of monomers are
used and the results are reported for that model.

Now we simulate folding of the designed sequence using
the simple lattice Monte Carlo folding algorithm [13-17]
and energy function given by Eq. (1). The move set
which we used allows corner flips and crankshaft motions
but excludes multiple occupancies of lattice sites. It was
argued in [17] that such a move set makes cubic lattice
simulation ergodic.

Simulations started from random coil conformations.
There was made a total of 1000 runs starting from dif-
ferent randomly chosen coil conformations. The main
result of this work is that in each run chain folded into
the unique target conformation with mean first passage
folding time close to 10 MC steps.

A typical folding trajectory recorded at temperature
T =1 is shown in Fig. 2. Analysis of energy changes
with Monte Carlo time shows that structures with en-
ergy lower than the energy of the native state have never
been encountered. In order to estimate whether this con-
clusion is sensitive to the move set we repeated simu-
lation with enhanced move set which allowed also for
3,4,5-monomer crankshaft moves. The results are sim-
ilar: Again the target state was the lowest energy one,
and the trajectory was similar to the one shown in Fig.
2.

Pronounced fluctuations around the minimum energy
structure make this model close to the Molten Globule
(MG) [18,19]. This is due to the fact that there are
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FIG. 2. A typical MC trajectory of folding simulations for
80-monomer chain. (a) The dependence of energy on MC
step. The energy of the native conformation is shown as En.
(b) The dependence of normalized number of native contacts
on MC step. The maximal number of contacts Niota1 = 105
for a compact 80-monomer. For each conformation we nor-
malize the number of native contacts, @, by Niotal S0 that
Q =1 corresponds to the native conformation.

no side chains in the model, which tight packing dis-
tinguishes the MG from the native state and makes the
native conformation more rigid [19].

The ability to fold appears to be a virtue of designed
sequences and is temperature dependent, as expected.
Steepness of the curves in Fig. 3 is consistent with the
assertion [5] that designed sequences have a first-order
folding transition. Applied to proteins this suggests that
the coil-MG transition may be also first order, like the
native-MG one. The first-order character of the native-
MG transition, however, may be due to a different reason,
side-chain freezing [19], which is not considered in the
present model (see [20] for the discussion of first-order
transitions in macromolecules).

The temperature dependence of entropy can be ob-
tained from temperature dependence of energy E(T') us-
ing the thermodynamic relation

s(T) = s(00) + % (-EQ —/Too @dt) )

Here s(00) is a high-temperature (athermal) limit of en-
tropy. The value s(co) = In(4.68) + & In(79)/79 is known
since at high T it coincides with that for an athermal
polymer on a cubic lattice [21]. Our simulations were
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FIG. 3. Temperature dependence of energy E (a), config-
urational entropy per monomer (b), and structural similarity
with the native state (c) for the designed sequence (squares)
and for a random sequence with the same amino-acid compo-
sition as the designed one (circles). At each temperature 10°
MC steps were made, and average energy F and structural
similarity with the target conformation Q were determined as
an average over the whole run at a given temperature. The
calculation of the entropy curve is explained in the text.

performed in the temperature range 0.5 < T < 10.0.
We took s(T' = 10) = s(oc). Only part of the tem-
perature dependence corresponding to the temperature
range 0.5 < T < 3.6 is shown to provide a reason-
able scale to show the transition. The truncated part
at T > 3.6 is a trivial base line. In the low-temperature
limit s(T" = 0.5) = 0.007. The smallness of this number
is consistent with the main result of this work—that de-
signed sequences repetitively return to the target (native)
conformation.

The same procedure was used then to calculate confor-
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mational entropy of the random sequence. The number
of conformations is determined as usually M = exp(N's).
In this case the same rate of annealing leads to freez-
ing without development of unique structure: Different
runs end up in different, unrelated conformations. The
number of such frozen low-temperature conformations is
estimated from the calculation of entropy (Fig. 3) to be
~ 10°. Note also that even in the denatured state energy
of designed sequence is noticeably lower than that of the
random sequence.

Low-temperature freezing for a random sequence is a
kinetic phenomenon: It was shown in [22] that in this case
the global minimum cannot be reached by any algorithm
in a reasonable [less than “Levinthal” exp(aN)] time.
This does not contradict the assertion [9] that random
sequences can have a thermodynamically stable unique
structure in a certain temperature range. The reason is
that the unique structure of random sequences becomes
thermodynamically stable only at temperatures lower
than T, the glass transition temperature [7-11,22,23].
However, as was shown in [22] (see also the excellent
discussion in [23]), at T < T, the kinetics become ex-
tremely slow because the ruggedness of energy landscape
of random sequences turns out to be crucial at temper-
atures lower than 7,. Sequences with large gaps have
native structures which are stable at T" > T, resolving
therefore the contradiction between the requirement of
thermodynamic stability and kinetic accessibility which
is characteristic of random sequences.

Analysis of the curve Q(T') in Fig. 3(c) suggests that
the native state is sufficiently stable at temperatures at
which simulations were done. For example, at T' = 0.8,
Q =~ 0.95 which means that 95% of native contacts per-
sist throughout the simulations. Conformations which
have 95% of native contacts differ from the native one
(shown, e.g., in Fig. 1) by “tails” of 3-4 monomers long
stretching out of the native structure. The alternative in-
terpretation of this result would be that the chain spends
95% of the time in the native state and 5% of the time in
unfolded conformation. The analysis of simulation data
at T = 0.8 suggests that the chains spend practically all
the time in or near native conformation, so that short-tail
fluctuations account for the fact that Q@ < 1. This can be
also illustrated from the estimate of entropy at T' = 0.8,
S = 0.05 per monomer, which suggests that fluctuations
cover ~ 100 conformations, each only slightly (by 3-4
monomers) different from the native state. This is con-
sistent with the “short-tail stretching” picture.

The same experiments were repeated with several
other sequences and several other randomly chosen tar-
get structures for proteins of different lengths (36-100
monomers). One target conformation even had a quasi-
knot (Abkevich, Grosberg, and Shakhnovich, unpub-
lished results). In all cases the results of simulations are
qualitatively the same and are quantitatively close to the
ones presented in this work.

Our design procedure generated sequences for which
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the target structure is likely to be the global (or at least
accessible stable local) energy minimum separated by a
pronounced energy gap from the set of non-native con-
formations. It is remarkable to note that such thermo-
dynamically oriented design solved at the same time the
kinetic problem making the native structure also kinet-
ically accessible. This may represent a simple and uni-
versal principle of evolutionary selection of one-domain
proteins with stable and kinetically accessible native con-
formation.
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FIG. 1. An example of a compact conformation of an
80-monomer on a cubic lattice and the optimized sequence.
Amino acids of different types are shown by different gray
scale for illustrative purposes. This conformation as well as
several other conformations with their sequences (not shown)
were used as native structures in our studies. The shown
sequence was designed to have low energy in the shown con-
formation.



