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Abstract

An introductory review of the Monte Carlo method for the statistical mechanics of condensed
matter systems is given. Basic principles (random number generation, simple sampling
versus importance sampling, Markov chains and master equations, etc) are explained and
some classical applications (self-avoiding walks, percolation, the Ising model) are sketched.
The finite-size scaling analysis of both second- and first-order phase transitions is described
in detail, and also the study of surface and interfacial phenomena as well as the choice
of appropriate boundary conditions is discussed. Only brief comments are given on topics
such as applications to dynamic phenomena, quantum problems, and recent algorithmic
developments (new sampling schemes based on reweighting techniques, nonlocal updating,
parallelization, etc). The techniques described are exemplified with many illustrative
applications.
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1. Introduction

Monte Carlo methods and molecular dynamics methods are the two main approaches of
‘computer simulation’ in statistical physics. Such techniques are now recognized as an
important tool in science, complementing both analytical theory and experiment. Since
the problem of statistical thermodynamics, namely explaining the macroscopic properties
of matter resulting from the interplay of a large number of atoms, is very complex,
computer simulation plays a particularly important role there. Molecular dynamics amounts
to numerically solving Newton’s equations of the interacting many-body system, and one
can obtain static properties by taking averages along the resulting deterministic trajectory
in phase space. Monte Carlo methods, on the other hand, aim at a probabilistic description
from the outset, relying on the use of random numbers, and this is responsible for the
name of the method. In practice, of course, these numbers are not truly random but rather
are ‘pseudorandom numbers’, i.e. a sequence of numbers produced on a computer with a
suitable deterministic procedure from a suitable ‘seed’ (see section 2). In this way one
can generate a stochastic trajectory through the phase space of the model considered and
calculate thermal averages if one is interested in equilibrium statistical mechanics (section 3).
However, Monte Carlo methods also find widespread applications to problems of statistical
physics not related to thermodynamics but which are defined in terms of other probabilistic
concepts. Examples are the generation of random walks to model diffusion processes,
formation of random structures by various types of aggregation processes, or geometrical
‘phase transitions’ such as the percolation problem (the bonds of a lattice are randomly
taken as conducting with probabilify and as isolating with probability 2 p and one asks

at which concentratiorp; of conducting bonds the whole lattice may support an electric
current, section 4.1).

Why does one want to carry out such simulations, what does one learn that one does not
learn otherwise? It turns out that most problems in statistical physics are too complicated to
allow exact solutions and due to the necessity of uncontrolled approximations the accuracy
of the results often is very uncertain. Therefore, in many cases the comparison between
theory and experiment is also inconclusive: if discrepancies occur, one does not know
whether to attribute them to inaccuracies of the mathematical treatment of a model, or to a
choice of an inadequate model, or to both sources of error. Conversely, due to the presence
of adjustable parameters it often happens that a wrong theory can be fitted to some (limited!)
experimental data; of course then the adjusted parameters are not very meaningful since
they are systematically in error.

As one example out of many, consider interdiffusion in random metallic alloys
(figure 1) or polymer mixtures. The theoretical descriptions start from equations
relating concentration currents to chemical potential gradients. Various rather arbitrary
assumptions are then made about the phenomenological ‘Onsager coefficients’ that enter
(Brochard et al 1983, Binder 1983, Krameet al 1984). Depending on the exact
nature of the assumptions and approximations, rather contradictory results are obtained:
according to the ‘slow mode theory’ (Brochaed al 1983) the slowly diffusing species
controls interdiffusion; according to the ‘fast mode theory’ (Kransral 1984) the
faster diffusing species dominates this process. Different researchers claimed evidence
for either theory from some experiments (see e.g. Binder and Sillescu (1989) for a
review). However, in this case fits or misfits between theory and experiment are not
so meaningful—clearly the model of figure 1 is oversimplified in comparison with the
materials available for the experiments. In contrast, the simulation (i€efal 1989)
can study precisely the same model (figure 1) on which the theories are based and can
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Figure 1. Schematic description of interdiffusion in the ABV model of a random binary alloy
(AB) with a small volume fractiorp, of vacant lattice sites, and interdiffusion proceeds via the
vacancy mechanism; A-atoms may jump to vacant sites with a jumfgatand B-atoms with

a jump ratel'g. (For simplicity, it is assumed that all pairwise interaction energies are zero, and
hence these jump rates do not depend on the occupation of neighbouring lattice sites.)

®

clearly bring out their strengths and/or weaknesses. All parameters used by the theory
(e.g. the Onsager coefficients) can be independently estimated from the simulation, so
there are no adjustable parameters in this comparison between theory and simulation
whatsoever.

Nevertheless, the reader should be aware of the fact that simulations also have some
problems, one must be aware of both ‘statistical errors’ and ‘controllable systematic errors’.
In principle, statistical errors can be made as small as desired by increasing the computing
time sufficiently. In practice, of course, this is not feasible for all problems that one
would like to study (e.g. quantum Monte Carlo methods, cf section 5.2, particularly those
models that suffer from the ‘minus sign problem’). Another problem is that often it is
difficult to estimate statistical errors reliably, in particular since they are ‘dynamically
correlated’ (section 3.4). Many publications containing Monte Carlo results suffer either
from the lack of error estimates or from severe underestimation of these statistical
errors.

By ‘controllable systematic errors’, we mean (apart from the lack of perfect randomness
of the pseudorandom numbers, section 2.1) limitations due to the finite size of the simulated
system and the finite ‘observation time’ during which a simulated system can evolve and
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is analysed. Often one deals with a cubic box of sizex L x L containing typically
betweenN = 10? and N = 10° degrees of freedom, depending on the complexity of the
problem, and using periodic boundary conditions. The resulting systematic effects due to
finite size (instead of the thermodynamic linfit— oo and N — oo which often is only

of interest) need to be carefully considered (section 4). This problem is obvious for critical
points of second-order phase transitions—a diverging correlation length of order parameter
fluctuations does not fit into a finite simulation box. However, the ‘finite-size scaling’-
theory (Fisher 1971, Barber 1983, Privman 1990, Binder 1987a, 1992a, b) developed for
this problem has in fact become a powerful tool for the analysis of critical phenomena
with simulations (section 4). However, there are many size effects unrelated to critical
phenomena: e.g. path integral Monte Carlo studies of Argon crystals at low temperatures
T do not yield the expected Debye law for the specific h€atx 7° but ratherC vanishes
according to an exponential law; o« exp(—A/T) (Museret al 1995); of course, no
acoustic phonons with wavelengths > L are present and thus a small gapin the
phonon energy spectrum arises.

The notion of ‘observation time’ alluded to above adopts the dynamic interpretation
(Muller-Krumbhaar and Binder 1973) of the Monte Carlo sampling as a numerical realization
of the associate (Markovian) master equation (see sections 3.4-3.5). This is the basis both
for applications to study diffusion processes and relaxation phenomena (section 5.1) and
for understanding errors resulting from the finite length of this stochastic Monte Carlo
‘trajectory’ through phase space along which averages are taken.

2. Random number generation and simple sampling of probability distributions

2.1. ‘Randomness’ and ‘pseudorandom’ number generators

The precise definition of ‘randomness’ (see e.g. Compagner 1991) is outside our scope
here. Truly random numbers are unpredictable in advance and must be produced by an
appropriate physical process such as radioactive decay. Series of such numbers have been
documented but would be very cumbersome to use for Monte Carlo simulations.

Here we are only concerned with pseudorandom numbers which are produced in the
computer by one of several simple algorithms and thus are predictable as their sequence
is exactly reproducible. This reproducibility, of course, is desirable as it allows detailed
checks of the simulation programs. The pseudorandom numbers have statistical properties
(nearly uniform distribution, nearly vanishing correlation coefficients, etc) that are very
similar to the statistical properties of truly random numbers, and thus a given sequence of
pseudorandom numbers appears ‘random’ for many practical purposes. In the following,
the prefix ‘pseudo’ will be omitted.

What one needs are random numbers that are uniformly distributed in the interval [0, 1]
and that are uncorrelated. By ‘uncorrelated’ we not only mean vanishing pair correlations
for arbitrary distances along the random number sequence but also vanishing triplet and
higher-order correlations. No algorithm exists that satisfies these needs fully, of course, and
the extent to which the remaining correlations lead to erroneous results of simulations has
been a longstanding concern (Knuth 1969, James 1990). Even random number generators
that have passed all standard tests and have been used successfully for years may fail for a
new application, in particular if it involves a new type of Monte Carlo algorithm (see e.g.
Ferrenberget al (1992) for a recent example). The testing of such generators is a research
subject in itself (see e.g. Marsaglia 1985, Compagner and Hoogland 1987, Compagner
1995).
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A limitation due to the finite wordlength of computers is the finite period: every
generator begins after a long but finite period to produce exactly the same sequence again.
For example, simple generators for 32-bit computers have a maximum peridti (ef20°)
numbers only. This is not enough for recent high-quality applications! Of course, one can
get around this problem (Knuth 1969, James 1990) but at the same time one likes the code
representing the random number generator to be ‘portable’ (i.e. in a high-level programming
language like FORTRAN or €' to be usable for computers from different manufacturers)
and efficient (i.e. extremely fast so as not to unduly slow down the simulation program as
a whole). Inventing new generators that are a better compromise between these partially
conflicting requirements is still of interest (e.g. Marsaglieal 1990).

We now briefly describe a few frequently used generators. Best known is the
linear multiplicative or congruential algorithm (Lehmer 1951) which produces integers
recursively using the formula

X; =aX;_1 + ¢ (modulom) D

which means that is added when the result otherwise were negative. For 32-bit computers,
m = 231 — 1 (the largest integer that can be used for that computer). The integer constants
a, ¢ need to be appropriately chosen (eug= 16 807,c = 0), and the starting valu&g
of the recursion (the ‘seed’) must be odd. Obviously, the apparent randomness Xf the
results because after a few multiplications withthe result would exceeéh and hence
be truncated, and so the leading digits Xf are more or less random. Carrying out a
floating-point division withm, numbers in the interval [0, 1] are produced.

These generators are simple and popular but have significant triplet and higher-order
correlations. Usingi-tuples of such numbers to represent pointsdedimensional lattices
one finds that the points lie only on certain hyperplanes (Marsaglia 1968). Better random
numbers are obtained if one uses two different generators simultaneously, where one
generator creates a table of random numbers from which the second one draws numbers at
random.

Another popular algorithm is the shift register method (Tausworthe 1965, Kirkpatrick
and Stoll 1981). A table of random numbers is first produced and a new random number
is produced combining two different existing humbers according to

X; = X;_, XORX;_, (2)

where .XOR. is the bitwise ‘exclusive or’ operation, apdand ¢ have to be properly
chosen. For example, the popular ‘R250" generator (Kirkpatrick and Stoll 1981) uses
p = 250, ¢ = 103, and it needs 250 initializing random numbers. ‘Good’ generators
based on equation (2) have smaller correlations between the random numbers than those for
equation (1) and a much longer period.

A third type of generator, the lagged Fibonacci generators, are also recommended in
the literature (Knuth 1979, James 1990) but will not be further discussed here. However,
we add the general recommendation that no user of random numbers should rely on their
quality blindly but rather perform his own tests in the context of his application.

2.2. Monte Carlo as a method of numerical integration

Many Monte Carlo computations may be viewed as attempts to estimate the value of a
(multiple) integral. This is particularly true for the applications in equilibrium statistical
thermodynamics, where one wishes to compute the thermal avétageof an observable
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A(X) (where X is a point in the phase spa€B as an integral over phase space,
1
()7 = [ dXACO) eXPL-H(X)/ kaT] 3)
Q

where Z is the partition functionkg Boltzmann's constantl temperature, an@{(X) the
Hamiltonian of the system. To give the flavour of the general idea, we first discuss the
one-dimensional integral

1
1:/0 £ (x) dx (4)
which we first rewrite as
1 1
1 =/ / g(x,y)dxdy )
0 0
with
0 if f(x) <y
glx,y) = {1 it Fo) >y (6)

We suppose for simplicity that also € f(x) < 1 for 0 < x < 1. ThenI is simply
interpreted as the fraction of the unit square<Ox,y < 1 lying underneath the curve

y = f(x). Now a straightforward (though often not very efficient) Monte Carlo estimation
of equation (4) is the ‘hit or miss’ method. We takepoints (Z,, Z,) uniformly distributed

in the unit square, & 2, < 1, 0< 2, < 1. Then! is estimated by

1 n
§=2 Y 8(Z Z) =/ ™
i=1

n* being the number of points for whicli(Z,;) < Z,;. Thus, we count the fraction of
points that lie underneath the curye= f(x).

Of course, such Monte Carlo methods for numerical integration are inferior to many
other techniques of numerical integration, if the integration space is low-dimensional.
However, the situation is opposite for high-dimensional integration spaces: for example, for
any method using a regular grid of points for which the integrand needs to be evaluated, the
number of points sampled along each coordinaté/i$? in d dimensions which is small
for any reasonable sample si2£ if d is very large.

In equations (4)—(7) it was assumed that the integration space is limited to a bounded
interval in space but this is not always true. For example,dhenodel of field theory
considers a field variabl¢ (x), wherex is drawn from ad-dimensional space anbl(x) is
a real variable with distribution

P(¢) x exp[—oz(—%d)2 + ;11(}54)] a>0—a<¢<+a. (8)

How can one then carry out multiple integrals over the space opt® This problem is
solved observing that for any distributia®(¢) the normalized integrated distributia® (y)
varies in the unit interval,

y 400
P'(y) =f P(¢) d¢// P(¢)do 0< P (<L ©)

Hence, definingt = Y (P’) as the inverse function of’(y), we can choose a random
number Z uniformly distributed between zero and one to obtain= Y (Z) distributed
according to the chosen distributiad®(¢). Of course, this method works not only for the
example chosen in equation (8) but for any distribution of interest. This method applies for
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all cases where sampling from a non-uniform distribution is required. Suppose we wish to
sampleg with P(¢) o ¢ from the unit interval. Then

y 1
P'(Y)=/O ¢d¢/f0 pdp =y%2  Y(P)=+2P

and thusp = +/2Z will have the desired distribution if is uniformly distributed. Often
(e.g. for the example of equation (8)) it will not be possible to obfa(®’) analytically
but then one can compute numerically a table before the start of the sampling.

As a side remark that will be useful later, we spell out explicitly how a known probability
distribution p; that a (discrete) state occurs with 1< i < n, with >/ _; p; = 1, is
numerically realized using random numbers uniformly distributed in the interval from zero
to unity: defining the analogue of an integrated probabikty= lezl pj, we choose a
statei if the random numbeg satisfiesP,_1 < Z < P;, with P, = 0. In the limit of a
large number ¥/) of trials, the generated distribution approximaggswith errors of order
1/VM.

Monte Carlo methods in equilibrium statistical mechanics can be viewed as an extension
of this simple concept to the probability that a poiXtin phase space occurs,

Peo(X) = (1/2) exp[-H(X)/ ks T]. (10)

Of course, the question arises: Should one randomly select the p¥irftem the phase
space uniformly (‘simple sampling’) or must one resort to a non-uniform sampling? In fact,
as will be discussed in section 3, the distributiBgy(X) is extremely sharply peaked, and
thus one needs ‘importance sampling’ methods which generate pXirpseferably from

the ‘important’ region of space where this narrow peak occurs.

Before we treat this basic problem of statistical thermodynamics in more detail, we
briefly mention the more straightforward applications of ‘simple sampling’ techniques in
statistical physics. We simply list a few characteristic problems and indicate how random
numbers enter the treatment. A particularly simple application is to generate configurations
of randomly mixed crystals of a given lattice structure, for example a binary mixture of
composition AB1_, for which one assumes perfect random mixing. One just has to use
random numbers€ uniformly distributed in [0, 1] to choose the occupancy of lattice sites
{j}: f Z; < x, the site is taken by an A atom, otherwise it is takgnabB atom. Such
configurations can now be used as the starting point for a numerical study of the dynamical
matrix, if one is interested in the phonon spectrum of mixed crystals, for instance. Also
these configurations can be used to study the site percolation problem (Stauffer 1985). We
shall come back to the statistical properties of ‘percolation clusters’ (defined in terms of
groups of A atoms such that each A atom has at least one nearest neighbour of type A in
the cluster) in section 4.1.

If one is interested in the simulation of transport processes such as diffusion, a basic
approach is the generation of simple random walks. Such random walks, resulting from
addition of vectors whose orientation is random, can be generated both on lattices and in
the continuum, and one can either choose a uniform steplength of the walk, or choose the
steplength from a suitable distribution. Such simulations are desirable if one wishes to
consider complicated geometries or boundary conditions of the medium where the diffusion
takes place. Also, it is straightforward to include competing processes: for example, in a
reactor, diffusion of neutrons in the moderator competes with loss of neutrons due to nuclear
reactions, radiation going to the outside, etc, or gain of neutrons due to fission events.
Actually, this problem of reactor criticality (and related problems for nuclear weapons!)
was the starting point for the first largescale applications of Monte Carlo methods by Fermi,
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von Neumann, Ulam, and their coworkers (see Hammersley and Handscomb (1964) for a
more detailed account on the history of Monte Carlo methods).

2.3. An application example: self-avoiding walks

Self-avoiding walks (SAWSs) on lattices are widely studied as a simple model for the
configurational statistics of polymer chains in good solvents (Kremer and Binder 1988,
Sokal 1995). Suppose one considers a square or simple cubic lattice with coordination
numberz. Then, for a random walk (RW) withV steps, we would hav&ry = zV
configurations but many of these random walks intersect themselves and thus would not be
self-avoiding. For SAWSs, one only expects of the ordeZghy configurations, where

Zspaw o< NY 7z, N — oo. (11)

Herey > 1 is a characteristic exponent (which is believed tojbe- 43/32 ind = 2
dimensions (Nienhuis 1984), while ih = 3 dimensions it is only known approximately,

y ~ 116 (Sokal 1995)), andex(< z — 1) is an ‘effective’ coordination number (also

not known exactly). However, it is already obvious that an exact enumeration of all
configurations would be possible for rather snygllonly, while most questions of interest
refer to the behaviour for larg®&’, and though there do exist sophisticated techniques for
the extrapolation of exact enumerations to larggle.g. Guttmann (1989) and references
therein), the use of these methods is fairly limited, and is not discussed here further. Here
we are only concerned with Monte Carlo techniques to estimate quantities sycbrags

or other quantities of interest, such as the end-to-end distance of the SAW,

1
(Rfsaw = - Y IRX)P. (12)

Here the sum is extended over all configurations of SAWs which we denote formally as
points X in phase space. One expects that

(RZ)SAW X NZU N — o0 (13)

wherev is another characteristic exponemt£ 3/4 in d = 2 (Nienhuis 1984), while in
d = 3 v is only approximately knowny ~ 0.588 (Sokal 1995)).

A Monte Carlo estimation of R?)saw now is based on generating a sample of only
M « Zspw configurationsXy, i.e.

M

— 1

R =3 IRX)P ~ (R:)saw. (14)
(=1

In the simple sampling generation of SAWS, thié configurations are statistically

independent and hence standard error analysis applies. Thus we expect that the relative

error behaves as

(8R?)? 1 |:<R4>SAW :|
— = —1].
(R?2 M —1[(R%)Gy

The law of large numbers then implies th is Gaussian distributed arour#t?)saw with

a variance determined by equation (15). One should note, however, that this variance does
not decrease with increasirdg. Statistical mechanics tells us that fluctuations decrease with
increasing numbeN of degrees of freedom; i.e. one equilibrium configuration differs in

its energyE (X) from the averagéE) only by an amount of order/4/N. This property

is called ‘self-averaging’. Obviously, such a property is not true (®*)saw. This ‘lack

(15)
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of self-averaging’ (Milchewet al 1986) is easy to show already for ordinary random walks
(Binder and Heermann 1988).

The simple sampling technique can be generalized from these strictly athermal SAWs
(alternatively we may think of the excluded volume interaction of an infinitely high repulsive
potential if two different monomers occupy the same site) to thermal problems. Suppose an
attractive energy-¢(e > 0) is won if two monomers occupy nearest-neighbour sites on the
lattice. It is then of interest to study the internal enel@g) of the chain as well as the
chain average linear dimensions (such(&8)7) as a function of the reduced temperature
kgT/e. One expects that faN — oo a special temperaturé = 6 occurs, the Theta point
where the chain dimensions scale like ordinary random waik$, o N (de Gennes 1979,
Jannink and des Cloizeaux 1990), while for< 6 chains are collapsed&?); -4 o< N%/3).

Since a configuration with nearest-neighbour contacts has a Boltzmann weight factor
proportional to expne/kgT), one needs to keep track of the (unnormalized) distributions
that describe how often a quantity (such B3 occurs together with having nearest-
neighbour contacts. Specifically, the Monte Carlo sampling attempts to sampte R) =
Z3W(n, R)/ZNRRY, where Z3AW is the total number of SAW configurations of steps
with n nearest-neighbour contacts and an end-to-end vdgtorThe normalizing factor
ZNRRW is the total number of all simple random walks for which immediate reversals are
forbidden (‘non-reversal random walk’). Definingy(n) = [ dR py(n, R), the averages
of interest are then obtained as

(R*)r =) R’expne/ksT)pn(n, R) / Y expine/ksT)pn(n)  (16)
n,R n

(H)yr = —& Y _nexpne/ksT)pn(n) / Y expne/ksT)pn (n). (17)
n,R n

Obviously, if py(n, R) has been sampled with sufficient accuracy, one can obtain thermal
averages at any desired temperatlif@ne simulation yields the full range of temperatures.
Also thermal derivatives such as those required for the computation of the specific heat per
monomer

1 1
Clhs = 1 8(H)r/d(keT) = N“HZ)T — (H)2)/(ksT)? (18)

can be carried out analytically. Of course, equation (18) is not restricted to this SAW
example but holds generally.

Techniques of this type have indeed occasionally been used to study non-trivial scientific
problems like the scaling properties near the Theta point (e.g. Krenhat 1982), or
the adsorption transition of chains at attractive walls (Eisenriegleal 1982). In the
latter problem, one considers a SAW grafted with one end to an impenetrable planar wall.
Whenever a monomer of the walk falls in this surface plane at 0, an energy—¢ is
gained. If we redefine as the number of monomers in the plane- 0, equations (16)—
(18) hold again. Now there occurs &t= T, an adsorption transition where the shape of
the chain changes from a ‘mushroom’ (fér > T3) to a ‘pancake’ (forT < Ty); i.e. for
T > T, the perpendicular component of the mean-square gyration raﬂgﬁ obeys the
standard scaling while faf < Ty it is finite,

(RS )11, X N (R )r<r, =& o« 1 =T/T)™" (19)

2
gL
where the exponent characterizing the divergence of the thicknéssof the ‘pancake’

is one quantity of interest. While such quantities are easily obtainable from various
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dynamic Monte Carlo algorithms, simple sampling is still useful for obtaining the exponents
characterizing the number of configurations,

— SB_
ZOSOM NN T > T ZEROMa Nl T =Ta (20)

Figure 2 shows estimates that have been obtained from corresponding work (Eisenriegler
et al 1982). One analyses there the quangtyyv) = In[Z(T, N)/Z(T, N + 2)], since
equation (20) implies that, for larghé, g(N) = 2InZeg + (1 — y1)(2/N) + - - -, and hence

a plot of g(N) against ZN should yield a straight line, the slope of which givas Note

that an increment of 2 fronV to N + 2 helps here to avoid even—odd oscillations, that
otherwise would occur at the tetrahedral lattice used here.

g(N) (”o

0.2
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Figure 2. Plot of g(N) = In[(Zsaw(N)/(z — DV)/(Zsaw(N + 2)/(z — 1)¥+2)] against 2N

(upper part) and corresponding plot for the non-reversal random walk (NRRW) (lower part).
Cases (i), (ii), (iv) and (v) correspond to infinite temperature, while cases (iii) and (vi) correspond
to T = T,, the temperature of the adsorption transition. Cases (i) and (iv) refer to chains with
both ends anchored at the wall, while all other cases refer to ‘mushrooms’ (chains with one end
anchored at the wall). Straight lines show the exponents quoted in the figure. From Eisenriegler
et al (1982).

2.4. Biased sampling; advantages and limitations of simple sampling techniques

Apart from the problem of the lack of self-averaging mentioned above (the accuracy of
the estimation ofR? does not increase with the number of steps of the walk) it is also not
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easy to generate a large sample of configurations of SAWSs for lErgethenever in the
construction process of a SAW we attempt to choose a lattice site that is already taken, the
attempted walk has to be terminated and the construction has to be started with the first step
again. Now the fraction of walks that will continue successfully fosteps will only be of

the order ofZsaw/(z — DV o [zer/(z — D]V N”~ which decreases to zero exponentially
proportional to exp—N ) with © = In[(z — 1) /ze] for large N. This failure of success in
generating long SAWSs is called the ‘attrition problem’.

The obvious recipe, to select at each step not blindly but only from among the lattice
sites that do not violate the SAW restriction, does not give equal statistical weight for
each configuration generated, of course, and so the average would not be the averaging
that one needs in equation (12). One finds that this method would create a ‘bias’ toward
more compact configurations of the walk. However, one can calculate the weights of
configurationsw (X)) that result in this so-called ‘inversely restricted sampling’ (Rosenbluth
and Rosenbluth 1955) and in this way correct for the bias and estimate the SAW averages as

M -1 M

R? = { Z[w(xt)ll} S WX R (21)
=1 (=1

However, error analysis of this biased sampling is rather delicate because the reweighted

distribution is not symmetric around the most probable value and mean values may differ

appreciably from corresponding most probable values (Kremer and Binder 1988, Batoulis

and Kremer 1988).

A popular alternative to overcome the above attrition problem is the ‘enrichment
technique’, founded on the principle ‘Hold fast to that which is good’. Namely, whenever
a walk attains a length that is a multiple ofteps without intersecting itsel,independent
attempts to continue it (rather than a single attempt) are made. The numbease fixed
and if we choose: ~ exp(us), the numbers of walks of various lengths generated will be
approximately equal. Enrichment has the advantage over inversely restricted sampling that
all walks of a given length have equal weights, while the weights in equation (21) vary over
many orders of magnitude for largg€. But the disadvantage is, on the other hand, that
the linear dimensions of the walks are highly correlated, since some of them have many
steps in common! Nevertheless, these techniques still have useful applications: a variant of
enrichment has been implemented to simulate configurations of star polymerg aiths
(each arm grows by one step,~ exp(uf) is chosen (Ohno and Binder 1991)); and the
Rosenbluth—Rosenbluth method is the starting point of the configurational bias Monte Carlo
(CBMC) algorithm that is very successful in the generation of configurations for dense
polymer systems (Frenkel 1993).

Due to the problems mentioned above, simple sampling and its extensions are useful
only for a small fraction of problems in polymer science (Binder 1995) and now importance
sampling (section 3) is used much more. However, we emphasize that related problems are
encountered for the sampling of ‘random surfaces’ (this problem arises in the field theory
of quantum gravity), in path-integral Monte Carlo treatments of quantum problems and in
several other contexts.

3. Importance sampling and the Metropolis method

3.1. Importance sampling in the canonical ensemble

In the canonical ensemble we wish to compute averdges of observablesA(X) as
defined in equation (3), restricting attention to classical statistical mechanics for the moment.
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For this problem, the simple sampling technique as described in the previous section
typically does not work: the probability distribution equation (10) has a very sharp peak
in phase space in a region where all extensive varialegX) are close to their average
values(A). For example, we consider the distribution of the enefgper particle,p(E)

which is obtained by integrating out all other variables in our system contaiipgrticles

p(E) = %/ dX §[H(X) — NE]exp[—H(X)/ksT]. (22)
Noting
+00 +o0
(H)r = N/ Ep(E)dE (H?) 7 = N2/ E?p(E)dE (23)

and invoking the general fluctuation relation for the specific h€atper particle,
equation (18), we conclude thai(E) must have a peak of height proportional $avV
and width proportional to /N nearE = (H)7/N. In fact, away from phase transitions
p(E) is actually Gaussian (Landau and Lifshitz 1958)

P(E) x exp{—[E — (H)7/N]’N/(2CkgT?)}. (24)

Now it is clear that with a simple sampling procedure only very rarely can we expect to
generate a phase space paoiitwith energy E in the region of this sharp peak. This
problem is very serious because it applies simultaneously to several variables. Consider for
instance an Ising model of a ferromagnet,

Hisng=—J » | SiSj—HY_ S S, =41 (25)
(ij) i

where Ising spins sit on sitéof a regular lattice{ij) is a summation over nearest-neighbour

pairs,J the exchange constar the magnetic field, and the phase space for this problem

X is the set of all possible spin orientatioffs = +1, S, = £1, ..., Sy = £1}. A quantity

of interestA(X) then is the magnetization per spin,

m = (1/N) Z S;. (26)

Again we conclude that the distributigr(m) will be very sharply peaked around the average
value (m)7 (for temperatureq’ less than the critical temperatufg there occur in fact two
peaks attmsp, according to the two possible signs of the spontaneous magnetizaipn
Figure 3 illustrates that indeed very sharply peaked distributions are obtained for rather
small systems.

Suppose now that we perform simple sampling for the Ising model, i.e. we choose the
spin orientations completely at random: the resulting distribution & a Gaussian centred
at zero of width ¥+/N, PSS(m) o exp(—m?N/2) (SS stands for ‘simple sampling’).
Obviously, this distribution would have hardly any overlap with the actual distribution
P(@m) at thermal equilibrium, cf figure 3. The same is true fB(E) (note that for
equation (25)PSS(E) is also a Gaussian centred at zero). Thus, by simple sampling most
of the computational effort would be wasted for exploring a completely uninteresting part
of the phase space.

Therefore, a method is needed that leads us automatically in the important region
of phase space, sampling points preferentially from the region which yields the peak of
distributions such as?(m), P(E), etc. Such a method actually exists, the importance
sampling scheme of Metropolet al (1953) chooses the statég, with a probability P (X,)
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Figure 3. Probability distributionP;, (s) of the magnetization per spin ofL x L x L subsystems

of a simple cubic Ising ferromagnet withi = 24% spins and periodic boundary conditions, for
zero magnetic field and temperatuig? /J = 4.0 (note that the critical temperature occurs at
aboutkgT;/J ~ 4.5114 (Ferrenberg and Landau 1991). Actually the distribution is symmetric
arounds = 0 and thus another peak occurs aroune: —msp that is not shown here. Note
that the linear dimensioi. here and in the following discussion of lattice models is always
measured in units of the lattice spacing. From Binder (1981a).

that is proportional to the Boltzmann factdtsq(X,), equation (10). Thus the average over
the sample of\f phase space poin{sX,}

S i eXPEH(X ) ks TIA(X )/ P(Xy)

AX) e @27)
> =1 EXP[=H(X)/ ke T]/ P (Xe)
reduces to a simple arithmetic average,
. 1M
AX) =, > AX). (28)
=1

Unlike simple sampling #(X,) = constant in equation (27)) all members of the considered
sample contribute with equal weight to the average which clearly is desirable. The problem
is, of course, to find a procedure which practically realizes this so-called ‘importance
sampling’ (where one chooses the phase space points not at all completely at random but
samples them preferentially from this region of phase space which is most important for
the average, with the given choice of external parameters that define the chosen statistical
ensemble, such & and H for the canonical ensemble of an Ising magnet). This problem
was solved by Metropoligt al (1953) who proposed to generate a sequence of states
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X, - X,;1 » X,.2 — --- recursively one from the other, with a carefully designed
transition probabilityW (X, — X,.1). From the theory of Markov processes, one can
show that the Markov chain of state§, for M — oo generates a sampleX,} that is
distributed according to the canonical distribution, equation (10).

The ‘move’ X — X'’ may be chosen as is convenient for the considered model: for
the Ising magnet, this may be a single spin flip, an exchange of two neighbouring spins,
or the overturning of a large cluster of spins (Swendseal 1992); for a fluid, the move
may be a random displacement of a particle from its old positigh to a new position
(r}) in its environment (Metropoliet al 1953, Wood 1968, Allen and Tildesley 1987); for
a self-avoiding walk, the move may be a ‘kink-jump’ or ‘crankshaft’ rotation of a group of
two or three neighbouring bonds (Verdier and Stockmayer 1962, Kremer and Binder 1988),
a ‘slithering-snake’-displacement of a bond from one chain end to the other in a randomly
chosen direction (Wall and Mandel 1975), or a ‘pivot move’ where one rotates one part of
the chain at a randomly chosen bead against the rest of the chain in a randomly chosen
direction (Madras and Sokal 1988, Sokal 1995). These moves are illustrated in figure 4.

(a)

end-bond kink-jump crankshaft

L

-—h-—\:-o--o (b)

]

?-—6

'
EAM{. /. ] (C)

'
‘pvm'\S.——-‘
Figure 4. Various examples for ‘dynamic Monte Carlo’ algorithms for self-avoiding walks
(SAWSs): sites taken by beads are shown by dots, and bonds connecting the bead are shown by
lines. Bonds that are moved are shown as wavy line (before the move) or broken line (after
the move), while bonds that are not moved are shown as full lines. (a) Generalized Verdier—
Stockmayer (1962) algorithm on the simple cubic lattice showing three types of motions: end-

bond motion, kink-jump motion, 90crankshaft rotation; (b) ‘slithering-snake’ algorithm; (c)
‘pivot’ algorithm. From Kremer and Binder (1988).

It must be emphasized, however, that in some cases it is very difficult to find acceptable
moves. For example, for polymers due to the connectivity of the chains many algorithms
suffer from a lack of ergodicity, for SAWs there may occur certain configurations that
may neither be relaxed nor be reached by a particular algorithm (Sokal 1995). In fact,
both algorithms of figure 4(a) and (b) suffer somewhat from this problem, although it is
believed that this problem is not so serious in practice (Kremer and Binder 1988). Another
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problem may be a very low acceptance probability of a move. For example, in a dense
system containing many polymeric chains the ‘pivot moves’ (figure 4(c)) will almost always
violate the exclude volume constraint that no lattice site can be occupied by more than one
bead, and hence the moves are disallowed. For off-lattice problems, it is often a non-trivial
matter to carry out moves such that in the absence of the Boltzmann weight phase space is
uniformly sampled (as it should be, cf equation (3)). Thus, designing more efficient ‘moves’
still is an active area of research (Binder 1992b, 1995), particularly for SAWs (Sokal 1995).

Now convergence of this Markov process towards thermal equilibrium is ensured by
imposing the condition of detailed balance,

Pe X)W (X — X') = P X" W(X' — X). (29)

A convenient choice (Metropolist al 1953) that satisfies equation (29) is expressed in
terms of the energy changé{ = H(X') — H(X) caused by the move

ro_l §H <0
75 texp(—8H / ks T) SH > 0.

Herearbitrarily a time constanty was introduced setting a time scale, so thagacquires
the meaning of dransition probability per unit timgwhich is useful in the context of the
dynamic interpretation of Monte Carlo averaging, to be discussed in subsection 3.4). One
chooses one Monte Carlo step (MCS) per particle as the unit of this Monte Carlo ‘time’.
Obviously, equation (29) is satisfied by the choice equation (30) irrespectiwg of

Here we shall not give a general proof that equation (29) suffices that sXateme
asymptotically (i.e. for largé/) chosen with the correct Boltzmann weight (see e.g. Wood
1968, Kalos and Whitlock 1986) but we simply follow Metropadéisal (1953) in quoting
a plausibility argument to show this. Let us consider a large number of Markov chains
in parallel. We assume that at a given step of the process ther&v,a®y/stems in
stater, N, systems in state, etc; and thatH(X,) < H(X;). Using random numbers,
one may construct moveX, — X, as will be discussed below. Disregarding the
energy changé?, the transition probability for these moves should be symmetric, i.e.
Wsn—o(X, — X,;) = Wsg—o(X; — X,). With these &a priori transition probabilities’
(also called ‘proposition probabilitiesWsx—o, it is easy to construct transition probabilities
which are in accord with equations (29) and (30), namely

WX, - X,) = Wypo(X, — X,) exp{—[H(X,) — H(X,)]/ksT} (31a)

W(X; — X,) = Wep—o( Xy — X,) = Wep—o(Xr — Xj). (31b)
The total numbewv,_,; of transitions fromX to X, at this step of the Markov chains is
Nios = N, W(X, — Xi) = N, Wsp=o(X, — X) exp{—[H(X,) — H(X,)]/kseT} (32)

WX > X)) = (30)

while the total number of inverse transitions is
Nyr = NW(Xs = X,) = NyWsp—o( X, = Xj). (33)
Now the net number of transitionSN,_,, becomes

ANI‘*)S = Nr~>s - Ns~>r = NrwéH:O(Xr - Xs) (exp[_H(XS)/kBT] - M) . (34)
exp[_H(Xr)/kBT] N,

Equation (34) is the key result of this argument which shows that the Markov process has

the desired property that states occur with probability proportional to the canonic probability

Peg(X) as given in equation (10). As long a5 /N, is smaller than the ratio of the canonic

probabilities we hav&\ N,_,; > 0, i.e. the ratiaV, /N, increases towards the ratio of canonic




Applications of Monte Carlo methods to statistical physics 503

probabilities; conversely, iN,/N, is larger than the ‘canonic ratioAN,_,; < 0 and hence
again N, /N, decreases towards the correct canonic ratio. Thus asymptoticalty—fero

a steady-state distribution is reached, whatg' N, has precisely the value required by
the canonic distribution. Instead of considering many Markov chains in parallel, we may
equivalently cut one very long Markov chain into equally long pieces and apply the same
argument to the subsequent pieces of the chain.

3.2. Some comments on models and algorithms

We return to the question what is meant in practice by the transition om0 X’. It has
already been emphasized above that there is a considerable freedom in the choice of this
move but one has to be careful to ensure large enough acceptance rates. Since equation (29)
implies thatW (X — X')/W(X' — X) = exp(—8H/kgT), 6 H being the energy change
caused by the move frolX — X', typically it is necessary to consider small changes of the

X only. Otherwise the absolute value of the energy chaéige would be rather large, and

then eitherw (X — X’) or W(X’ — X)) would be very small. Then it would be almost
always forbidden to carry out that move and the procedure would be poorly convergent. Of
course, there are exceptions to this rule, like the cluster algorithms for Ising models and
other spin models at the critical point (Swendsdral 1992), or the semi-grand canonical
algorithm for binary (AB) symmetrical polymer mixtures (Sariban and Binder 1987) where
one takes out a whole polymer chain containiignonomers of one type, and replaces it

by a polymer chain in the same configuration but of different type. All such exceptions are
rather special and require special reasons to work: for example, in this polymer example
the temperatures of interest are very large, of okgd&f o ¢ N, wheree is the interaction
energy between a pair of monomers, and althold@ty is of orderN |§H/kgT| is still of

order unity!

We now consider a few examples of models that can be studied easily with Monte Carlo
methods, and of the corresponding moves that are used, so the reader can get a flavour of how
one proceeds in practice. In the lattice gas model at constant particle number, a transition
X — X’ may consist of moving one patrticle to a randomly chosen neighbouring site. In
the lattice gas at constant chemical potential, one removes (or adds) just one particle at a
time which is isomorphic to single flips in the Ising model of anisotropic magnets. Figure 5
now illustrates some of the moves commonly used for a variety of models under study in
statistical mechanics. For the Ising model the most commonly used algorithms are the single
spin-flip algorithm and the spin-exchange algorithm (figure 5(a) and (b)). The single spin-flip
algorithm obviously does not leave the total magnetization of the system invariant, while the
spin-exchange algorithm does. Thus, these algorithms correspond to realizations of different
thermodynamic ensembles: (a) realizes a ‘grand-canonical’ ensemble, temp@&taack
field H being the independently given thermodynamic variables, conjugate thermodynamic
guantities (the magnetizatiofwm)r is conjugate toH) need to be calculated. Figure 5(b)
realizes a ‘canonical’ ensembl€&,andm being the independently given variables, now the
field (H)7 is the conjugate variable we may wish to calculate from the simulation.

In calling the (', H) ensemble ‘grand-canonical’ and thE, {z) ensemble ‘canonical’,
we apply a language appropriate to the lattice gas interpretation of the Ising model where
the spins; is reinterpreted as a local density = (1 — S;)/2(= (0,1)). Then (m)r is
related to the average density;)r as(m)r = 1—2{(p;)7, andH is related to the chemical
potential of the particles which may occupy the lattice sites.

In the thermodynamic limilv — oo, different ensembles in statistical mechanics yield
equivalent results. Thus, the choice of the ensemble and hence the associate algorithm may
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Figure 5. Examples of movesX; — X; commonly used in Monte Carlo simulations for
some standard models of statistical mechanics. (a) Single spin-flip Ising model (interpreted
dynamically, this is the Glauber kinetic Ising model). (b) Nearest-neighbour exchange Ising
model (interpreted dynamically, this is the Kawasaki kinetic Ising model). (c) Two variants
of algorithms for theXY model, using a random numberequally distributed between zero
and one: left, the angle; characterizing the new direction of the spin is chosen completely at
random; righte/ is drawn from the intervald; — Ag, ¢; + Ag] around the previous direction

@;. (d) Moves of the coordinates of an atom in a two-dimensional fluid from its old position
(xi, y;) to a new position equally distributed in the square of §2&x)(2Ay) surrounding the

old position. (e) Moves of a particle in a given single-site poteritigh) from an old position

¢; to a new positionp;. From Binder and Heermann (1988).

seem a matter of convenience. However, finite-size effects are quite different in the various
ensembles, and also ‘rates’ at which equilibrium is approached in a simulation will differ.
Thus, the choice of the appropriate ensemble is a delicate matter. Using the word ‘rate’,
we have in mind the dynamic interpretation i{Ner-Krumbhaar and Binder 1973) of the
Monte Carlo process: then case (a) realizes the Glauber (1963) kinetic Ising model which
is a purely relaxational model without any conservation laws, while figure 5(b) realizes the
Kawasaki (1972) kinetic Ising model which conserves magnetization.

For models with continuous degrees of freedom, sucl Bsor Heisenberg magnets

Hyy =—J Y (S'SF+S'S) — H, Z ¥ (592 +(sH?=1 (35)
(i,j)
Hreis=—J ) _(S; - S)) — H. Z ST S-S =)+ ()P +(5H? =1 (36)

(i,7)
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but also for models of fluids (figure 5(c) and (d)), it often is advisable to choose the new
degree(s) of freedom of a particle not completely at random but rather in an interval around
their previous values. This interval can then be adjusted such that the average acceptance
rate for the trial moves considered in figure 5 does not become too small.

It may also be inconvenient (or even impossible) to sample the full phase space for
a single degree of freedom uniformly. For example, we cannot sapie figure 5(e)
uniformly from the interval {00, +00]. Such a problem arises for the so-caligtimodel,

Hoa = Y (GAQZ+ 3BoH) + ) 3C(hi — ¢)? — 00 < ¢ < +00 (37)

i (i,J)
A, B, C being constants (foA < 0, B > 0 the single site potential (¢;) = ;A¢? + 3 B¢}
has the double-minimum shape of figure 5(e)). There it is advisable to choosg’'she
already from an importance sampling scheme, i.e. one constructs an algorithm which
generates the; proportional to the distributiom(¢;) « exp[—V(¢;)/kgT], as discussed
in equations (8) and (9).

Another arbitrariness concerns the order in which the particles are selected for
considering a move. Often one chooses to select them in the order of their labels (in
the simulation of a fluid or lattice gas at constant particle number) or go through the
lattice in a regular typewriter-type fashion (in the case of spin models, for instance). For
lattice systems, it may be convenient to use sublattices. For example, in the ‘checkerboard
algorithm’ the white and black sublattices are updated alternatively, for the sake of an
efficient ‘vectorization’ of the program (see e.g. Landau 1992). An alternative is to choose
the lattice sites (or particle numbers) randomly; this is more time-consuming but is preferable
if one is interested in dynamical properties (we again anticipate here that the Monte Carlo
process can be interpreted as a dynamical evolution of a model described by a master
equation, see section 3.4).

It is also helpful to realize that often the transition probabii¥( X — X'’) can be
written as a product of an ‘attempt frequency’ times an ‘acceptance frequency’. By clever
choice of the attempt frequency, it is sometimes possible to attempt large moves and still
have a high acceptance and thus make the computations more efficient.

We also emphasize that the detailed balance principle (equation (29)) does not fix the
choice of the transition probabilith (X — X) uniquely. An alternative to equation (30)
is the ‘heat bath method'. There one assigns the new wa#lugf the ith local degree of
freedom in the move fronX to X' irrespective of what the old valug was. One therefore
considers the local energy; () and chooses the stat¢ with probability

exp[—H; (a})/ ke T] / > expl=Hi()ksT].
{o}

We now outline the realization of the sequence of stifesith chosen transition probability
W. At each step of the procedure, one performs a trial meyve— «;, computes
W(X — X’) for this trial move, and compares it with a random numbemuniformly
distributed in the interval & n < 1. If W < n, the trial move is rejected, and the old state
(with «;) is counted once more in the average, equation (28). Then another trial is made.
If W > n, on the other hand, the trial move is accepted, and the new configuration thus
generated is taken into account in the average. This new state then also serves as a starting
point for the next step.

Since subsequent state¥, in this Markov chain differ by the coordinate; of
one particle only (if they differ at all), they are highly correlated. Therefore, it is not
straightforward to estimate the error of the average, equation (28). Let us assume for the
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moment that, after steps, these correlations have died out. Then we may estimate the
statistical erroB A of the estimated from the standard formula,
- 1 k+pno—1 _
A2 =" Y [AX)-A”  k»1 (38)
H=H0
where the integergo, u, k are defined by = (M — My)/n, ug labels the state = Mp+1,
w = po + 1 the stater = Mg+ n + 1, etc. Then for consistency should be calculated as

k+po—1
A= > AKX, (39)

H=Ho
In equations (38) and (39) we have anticipated that one has to omit thé/fjrstates that
are not yet characteristic for thermal equilibrium, from the average. If the computational
effort of carrying out the ‘measurement’ &f(X,) in the simulation is rather small, it is
advantageous to keep taking measurements every Monte Carlo step per degree of freedom
but to construct block averages ovesuccessive measurements, varyingntil uncorrelated
block averages are obtained.

3.3. An application example: the Ising model

Suppose we wish to simulate the nearest-neighbour Ising ferromagnet finxah x L
simple cubic lattice measuring lengths in units of the lattice spaciny soL2, and using
periodic boundary conditions and the single spin-flip algorithm. We first specify an initial
spin configuration, for example all spins are initially pointing up. Now one repeats again
and again the following steps.

1. Select one lattice siteat which theS; is considered for flippingy; — —S;).

2. Compute the energy chang#l associated with that flip.

3. Calculate the transition probabilitgW for that flip.

4. Draw a random number uniformly distributed between zero and unity.

5. If n < oW flip the spin, otherwise do not flip it. In any case, the configuration of
the spins obtained in this way at the end of step 5 is counted as a ‘new configuration’.

6. Analyse the resulting configuration as desired, store its properties to calculate
the necessary averages. For example, if we are just interested in the (unnormalized)
magnetizationM;,; and its distributionP (M), we may updateM;,; by replacing Mo
by Mot + 2S;, and then replacing® (M) by P(Mio) + 1 (appropriate initial values before
the process starts are setMy = L3, P(M') = 0, P(M’) being an array wheré/’ can
take integer values from-L3 to +L3).

It should be clear from the above list that it is fairly straightforward to generalize
this kind of algorithm (see e.g. Binder and Heermann (1988) for an explicit listing of
a corresponding FORTRAN program) to systems other than Ising models, such as those
considered in figure 5. The words ‘spin’ and ‘flip (ping)’ simply have to be replaced by
the appropriate words for that system. We also note that one can save computer time by
storing at the beginning of the calculation the small nhumber of different vdli#g} that
the transition probabilityw for spin flips may have, rather than evaluating the exponential
function again and again. This ‘table method’ works for all problems with discrete degrees
of freedom, not only for the Ising model.

At very low temperatures in the Ising model, nearly every attempt to flip a spin is bound
to fail. One can construct a more complicated but quicker algorithm by keeping track of
the number of spins with a given transition probability at each instant of the simulation.
Choosing now a spin from thieth class with a probability proportional #;, one can make
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every attempted spin flip successful (Boetzal 1975). An extension of this algorithm to

the spin-exchange model has also been given (Sadiq 1984). A systematic generalization of
such techniques due to Novotny (1995) yields huge speed-ups in the study of metastable
states and their decay at low temperatures.

When we now use a simulation program for the Ising model that records the distribution
function of the total magnetizatioR (M) or the related distributio®, (s) of a normalized
quantity s = Miot/L¢ (d being the dimensionality of the system) we will find that it is a
non-trivial matter to judge where (in the absence of symmetry-breaking magnetic fields)
the expected transition from a paramagnetic state (with= 0) to a ferromagnetic state
takes place (where a spontaneous magnetization,o.n: exists). In fact, one finds that
Py (s) changes very gradually from a symmetric single peak distribution alipvi® a
symmetric double-peak distribution beldl, and the symmetnyP; (s) = P, (—s) implies
that (s) = 0 at all temperatures (figure 6). F@r> T, and linear dimensiong exceeding
the correlation lengtl§ of order parameter fluctuation§ oc |T — Tc|™"), this distribution
resembles a Gaussian,

Pr(s) = LY?2rkaT x P2 exp[—s?L? ) (2ks T x 1)) T>T,H=0. (40)

The ‘susceptibility’ x ™ defined in equation (40) from the half-width of the distribution
should smoothly tend towards the susceptibiljfyof the infinite system ad. — oo
(remembery o« |T — Tg|77). ForT < T, but againL > &, the distribution is peaked

at values=s{L), neartmsgy near those peaks again a description in terms of Gaussians
applies approximately,

Ld/Z 1 5] ZLd 1 (L) 2Ld
Pi(s)=—=———— 1 _exp _ (5 = Smad"L7 + —exp _ (5 sma) LY (41)
@rkgT x Y2 | 2 2kgT x L 2 2kgT x D
forT < T, H=0.
We thus can obtain an estimate for the order parameter when we restrict attention to
only the positive part of the distribution,

(S>’L=/O sPL(S)dS//O Pr(s)ds = (|s]). (42)

However, from equations (40) and (42) it is clear that for firitd|s|), is non-zero also
in the disordered phase and thus the smooth non-singular temperature variatief) ;of
results that is shown qualitatively in figure 6. Other estimatesifgrn can be extracted
from the position of the maximum%), or the root-mean-square magnetizatio?) /%, but
figure 7 clearly shows that all these estimates do depend on the length.seald thus an
extrapolation to the thermodynamic limit, — oo, clearly is required:

mepone= 1M sii, = lim {|s])z = lim (s%)/%. (43)
All these extrapolations are more convenient to use than the double limiting procedure that
is often used in analytical work where a symmetry-breaking field is taken to zero after the
thermodynamic limit has been taken,

Mspont = h!lm lim (s)r.7.u- (44)

—00 L—o00

Figure 7 illustrates the fact that one can avoid the cumbersome study of many different
sizes of (small) systems by rather analysing subsystems of one large system. As we will see
below, doing this with the single-spin-flip algorithm described above is not really convenient
because of ‘critical slowing down’ but this problem can be eased by using cluster algorithms
instead (section 5.3). In any case, né&athe size effects are clearly very pronounced and
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Figure 6. Schematic evolution of the order parameter distributiprts) from7 > T to T < T¢
(from above to below, left-hand side) for an Ising ferromagnet, wheisethe magnetization
per site, in a box of volum& = L (= L3 in d = 3 dimensions). The right-hand side shows
the corresponding temperature dependence of the mean order pargmgténe susceptibility
ksTx' = L({s?)—(Is])?), and the reduced fourth-order cumulaht = 1—(s*)/[3(s%)?]. Dash-
dotted curves indicate the singular variation that results in the thermodynamic llimit,co.

thus the naive extrapolation as shown in figure 7 is not very accurate. This problem is
even more severe for the susceptibility which could be extracted from the following
extrapolations As is the half-width of a Gaussian peak)

kBTX:LIi_[nDO((sZ)LL"):LIi_r)nOO PL’Z(O)Ld/(Zn):Lli_r>noo(As)2Ld/(8In 2 T>T, (45)

or

keTx = Jim ((s%). — (IsNP)L? = lim P 2(sd9L!/(8/m) = lim (As)*L?/(8In2)
T>T,. (46)

A more efficient way of carrying out this extrapolation to the thermodynamic limit will be
provided by the finite-size scaling theory (section 4).
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Figure 7. Estimates of the spontaneous magnetization of the three-dimensional Ising model with
nearest-neighbour interactioh on the simple cubic lattice at a temperatugel’/J = 4.425
below criticality ¢g7c/J = 4.5114, see Ferrenberg and Landau (1991)). These estimates are
obtained from extrapolating the size dependence of the posigiR) (of the maximum of the
probability distributionP; (s) of L x L x L subsystems of a total system of size*2dnd of
moments(|s|), and(s2)1/2. The direct estimate for the magnetization of the total systém)(

is also included. From Kaslét al (1984).

3.4. The dynamic interpretation of Monte Carlo sampling; statistical errors; time-displaced
correlation functions

Configurations generated sequentially one from the other in the Markov chain are highly
correlated with each other. Clearly, these correlations strongly affect the accuracy that can be
obtained with a given number of total steps by the Monte Carlo program. These correlations
can be understood by a dynamic interpretation of the Monte Carlo process in terms of a
master equation describing a well defined dynamic model with stochastic kinetigke(M
Krumbhaar and Binder 1973). At the same time, this forms the basis for the application
of Monte Carlo methods to the simulation of dynamic processes (Binder and Kalos 1979,
Kehr and Binder 1984, Binder and Young 1986, Herrmann 1986, Battmey 1985, Binder
1995). These dynamic applications include such diverse fields as the Brownian motion of
macromolecules (Bauragtner 1985, Binder 1995), relaxation phenomena in spin glasses
(Binder and Young 1986), nucleation and spinodal decomposition (Binder and Kalos 1979,
Guntonet al 1983), diffusion-limited aggregation (DLA) and related growth phenomena
(Herrmann 1986), diffusion in alloys (Kehr and Binder 1984) and at surfaces (Sadig and
Binder 1983), etc. Note that the references just quoted actually constitute only a small
sample of all existing work!

In this dynamic interpretation, we just associate a ‘timewith the scalev of
the subsequent configurations, normalizing the time scale sucHVt{‘@‘t single-particle
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transitions are attempted in unit time. This ‘time’ unit is called 1 MCS (Monte Carlo step
per particle). We consider the probabili®( X, t) = P(X,) that at timer a configurationX
occurs in the Monte Carlo process. This probability satisfies a Markovian master equation

dP(X,t) , ’ ’
T:—§W(X—>X)P(X,t))+;W(X — X)P(X',1). (47)

Equation (47) describes the balance that was already considered above (equations (31)—
(34)) by a rate equation, the first sum on the right-hand side representing all processes
where one moves away from the considered skt¢and hence its probability decreases)
while the second sum contains all reverse processes (which hence lead to an increase
of the probability of findingX). In thermal equilibrium the detailed balance principle
(equation (29)) ensures that these two sums always cancel and he®igXfor) = Peq(X)

we have (X, 1)/dt = 0, as is required. In factPeq(X) is the steady-state solution of

the above master equation.

If the potential energy+(X) is finite for all configurationg X'} of the system, it follows
from the finiteness of the system that it is ergodic. However, as soon as infinite potentials
occur (such as the excluded-volume interaction for self-avoiding walks), this is no longer
true. Even in finite systems certain configuratioXismay be in disjunct ‘pockets’ of phase
space that are mutually inaccessible. There is no general rule under which conditions this
occurs, it depends on the detailed rules for the considered moves. For example, for the
algorithms of figure 4(a) and (b) one may construct configurations of SAWs that can neither
be reached nor left (Sokal 1995), and so the algorithms of figures 4(a) and (b) are manifestly
non-ergodic—although this does not seem to affect the accuracy in practice much (Sariban
and Binder 1988).

A practically more important apparent ‘breaking of ergodicity’ occurs for systems which
are ergodic if the ‘time’ over which one averages is not long enough, i.e. less than the so-
called ‘ergodic time'z, (Palmer 1982, Binder and Young 1986). This ergodicity breaking
is intimately related to spontaneous symmetry breaking associated with phase transitions in
the system. In a strict sense, these phase transitions can occur only in the thermodynamic
limit N — oo, and alsore diverges only forN — oo but can nevertheless be very large
already for finiteN. For example, for the Ising ferromagnet studied in section 3.3 we have,
for T < T, Te & Pr(smax)/Pr(s = 0) o< exp[2fint LY~/ kgT], where fi; is the interfacial
tension between coexisting phases of opposite magnetization, as shall be discussed below.
Thus Inte o« N*-Y9 j.e. 1 increases rapidly withVv for T < T,. Nevertheless, we assume
in the following that lim_, .. P(X, 1) = Peq(X), i.€. the ergodicity property can be realized
in practice.

In equation (47) we have written”{ X, ¢)/dt rather thamA P(X, t)/At, although there
is a discrete time incrememtr = 7o/N. This step is justified since one can consider
as a continuous variable stochastically fluctuating with distribugirizo) exp[—AtN /o]
which has a mean valuar = 1p/N. Since the time scale on which dynamic correlations
decay is at least of the order af, these fluctuations of the ‘time’ variable proceeding in
regular steps\t = 19/ N are not important for the calculation of time-displaced correlation
functions. The inhomogeneous updating of ‘time’, however, is crucial when one uses the
‘n-fold way’ (Bortz et al 1975) or related algorithms, where particles are chosen for a move
proportional to their transition probability.

Thus we reinterpret equation (39) as a time average along the stochastic trajectory in
phase space, controlled by the master equation for the system, equation (47):

A= (ty — tMo)‘lf ) A(r) dt (48)

IMO
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wherery (ty,) is the time elapsed afte¥ (Mp) configurations have been generated
ty = Mt/N, My = Mopto/N. (49)

The time: is related to the label of the configurations as = vrg/N. Comparing the
time average, equation (48), with the ensemble average, equation (3) which was the starting
point of our considerations, it is obvious that ergodicity may be a problem for importance
sampling Monte Carlo, as anticipated above.

Time-displaced correlationsA () B(0))r or A(¢)B(0) are then defined as

ty—t
AW)BO) = (ty — t — tMO)*1/ At +1t)B({)dt ty — > ty,. (50)
IMO
Of course, one requires thay,, can be chosen large enough so the system has already
relaxed towards equilibrium during the timg,, and then the stateX (¢) included in the
sampling fromzy,, to 1), are already distributed according to the equilibrium distribution,
P(X,t) = Pe(X), independent of time. However, it is also interesting to study the
initial non-equilibrium relaxation process by which equilibrium is approached. Then
A(t) — A depends systematically on the observation timeand an ensemble average
(A())r — (A(c0))r IS non-zero (remember that lim,, A = (A); = (A(oc0))r if the
system is ergodic). We have definéd(s))r as

(AD)r =) P(X,DAX) =) P(X,0A(X, (1)), (51)
X X

Here we have reinterpreted the ensemble average involved as an average weighted with
P(X,0) over an ensemble of initial states (r = 0) which then evolves as described by

the master equation, equation (47). In practice, equation (51) is realized by averaging over
nwn > 1 statistically independent runs,

Mrun

[AD]ay = npn Y A2, ) (52)
=1

A(t, £) being the observablé recorded at time in thelth run of this non-equilibrium Monte
Carlo averaging. For example, these runs may differ in their random number sequence and/or
their initial condition X (+ = 0), etc.

A discussion of the question to which type of problems such master equation descriptions
(equations (47)—(52)) are applicable will be deferred to section 5. Here we are rather
interested in applying this formalism to a discussion of statistical errors. Suppose
successive observations,, u = 1,...,n, of a quantityA have been recorded: (> 1).

We consider the expectation value of the square of the statistical error

1 n 2 1 n
(6A)%) = <[n D (A - <A>>} > = 5 2 (A= (4D
n=1 n=1

2 n n
T2 Z Z (AuAp,) — (A)D). (53)

n1=1 po=p1+1

Changing the summation index, to u, + u yields

1

(A7) == [<A2> — (242 (1= 1) (4oa,) - <A>2>]. (54)
n=1

Now we transform to the time variable= §ru, 8¢ being the time interval between two
successive observations,, A,1 (often it is more efficient to takér = ro or even 1@,
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rather thanst = Ar = 1p/N, so one need not take observations at every microstep of the
procedure). Transforming the sum to an integral yields=(nét)

((6A)?) = 1 {<A2> — (A2 + 2 f " (1— t) [(A(0)A(0)) — (A)?] dt}
n 8t Jo th
- 1<<A2>—<A>2>{1+2/" (1—’) mmdr}. (55)
n ot Jo t,
In the last step we have introduced the normalized relaxation function
da(t) = [(AQ)A®)) — (A)]/[(A?) — (A)?] (56)

with ¢4(0) = 1 and¢,(r — oo) = 0. We define a relaxation time from the integral
w=[ s 57)
For t, > 4 equation (55) reduces to
((6A)%) = ;—L[<A2> — (A)’)(L + 2t4/51). (58)

If 8t > 14, then the second value in parentheses in equation (58) is unity to a very good
approximation, the statistical error then is the same as for simple sampling of uncorrelated
data. In the inverse case whete« t4 we have
(A ~ 254143 — (4] = 2143 — (a7 (59)
ndt t,
which shows that the statistical error is then independent of the choice of the time interval
8t: although for a given averaging timga smallerst increases the number of observations,
it does not decrease the statistical error, only the ratio between the relaxation,tiamel
the observation time, matters.
Since t, becomes very large near second-order phase transitions (‘critical slowing
down’, Hohenberg and Halperin (1977)), choice of algorithms that redycbecomes
very important, see section 5.3. On the other hand, careful ‘measurements’ ai&jh)
and (A%) — (A)? allow via equation (58) a straightforward estimationf (Kikuchi and
Ito 1993).
We conclude this subsection by defining a nonlinear relaxation function

p™ (@) = [(A®))r — (A(00))7]/[{A(0)7 — (A(00))7] (60)
and the corresponding nonlinear relaxation time

" = fo ¢\ (1) dbr. (61)

The condition that the system is well equilibrated then simply becomes

ty > T, (62)

Equation (62) must hold for all quantities, and hence one must focus on the slowest
relaxing quantity (for Which/gn') is largest) to estimatgy, reliably. Near second-order phase
transitions, the slowest relaxing quantity usually is the order parameter of the transition and
not the internal energy. Hence the ‘rule’ published in some Monte Carlo work that the
equilibration of the system is established by monitoring the time evolution of the internal
energy is a procedure that is clearly not valid in general.
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3.5. Other ensembles of statistical physics

So far the discussion has been mostly restricted to the canonical ensemble, i.e. for an Ising
magnet, the number of lattice sites (spins)the temperatur@, and the external magnetic

field H are the given (independent) thermodynamic variables. Of course, it is also possible
to carry out simulations in other ensembles, for example one may choose an ensemble where
the variable thermodynamically conjugatefig namely the magnetization, is given (and

fixed). In fact, the spin-exchange algorithm of figure 5(b) realizes that ensemble.

In such a simulation using theVinT) ensemble the magnetic field then is a non-
trivial quantity which one may wish to calculate. This is not so straightforward as the
calculation ofm in the (WHT) ensemble (equation (26)), because unlike the latter variable
H (or other intensive thermodynamic variables, for other ensembles) cannot be directly
expressed as function of the microscopic degrees of freedom.

For systems with discrete degrees of freedom, such as the Ising model, this problem
can be handled by the concept of ‘local states’ (Alexandrowicz 1975, 1976, Meirovitch and
Alexandrowicz 1977). We use here the ‘lattice gas model’ language of the Ising problem,
i.e. lattice sitesi are occupied (local density; = (1 — S;)/2 = 1, i.e.§; = —1) or
empty (o; = 0,S; = +1); constant magnetization corresponds then to constant density
(or particle numberV, respectively) in the lattice gas, arl translates into the chemical
potential . of the particles (note that th&¥mT ensemble of the Ising magnet corresponds
to the canonicalNVVT ensemble of the lattice gas, while théHT ensemble of the
magnet corresponds to the grand-canonje®7 ensemble). Assuming that a nearest-
neighbour energy-¢ is won if two neighbouring sites of a square lattice are occupied, the
interaction energy of an atom can take the five valigs= 0, —s, —2¢, —3¢ and —4e,
respectively. We define a set of five conjugate statebBy removing the central atom of
each statex, with E,, = 0. If the frequencies of occurrence of the local stateand
o’ are denoted as, and v, , the condition of detailed balance (equation (29)) requires
that

ve/Ver = XPl(—Eq + 1)/ ke T] kBLT — IN(va/vee) + Eo/kaT.  (63)

To smooth out fluctuations it is advisable to averag®ver all (five) local states. This
technique has been used to study problems such as the excess chemical potential in a sys-
tem where a droplet coexists with surrounding vapour (Furukawa and Binder 1982), for
instance.

For off-lattice systems the standard method to sample the chemical potential is the ‘test
particle insertion method’ (Widom 1963): one tries to insert a particle at a randomly chosen
position, calculates the change in energ¥; due to this test particle, and estimajegrom

(1 — po)/keT = —In(exp(—AEy)/ksT ) nvr- (64)

Here o is the chemical potential of an ideal gas &f particles at temperatur@ in

the same volumé/. Applications of equation (64) are ubiquitous (Allen and Tildesley
1987, 1993, Allen 1996). Particular problems arise, of course, when either the system
is very dense or the particle to be inserted is a complex object (e.g. a macromolecule):
then AE; is very large and the sampling of eXpAE:/ksgT) will not work out in
practice. For example, for the bond fluctuation model (Carmesin and Kremer 1988) of
flexible polymers a chain is represented by effective monomers connected by effective
bonds on a lattice, assuming that each ‘monomer’ blocks all eight sites of an elementary
cube for further occupation. For this excluded volume interactidy = oo as soon

as a monomer of the test chain overlaps with just one occupied site only. Therefore,
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the probability that one can insert a long chain into a dense system without overlap is
extremely small—e.g. Miler and Paul (1994) estimate that for chain length= 80 and
volume fractiong = 0.5 of occupied sites this insertion probability is as small as’40
Various specialized techniques have been devised to overcome this problem: stepwise
growth of macromolecules (Kumar 1994), configurational bias Monte Carlo (Frenkel 1993),
thermodynamic integration (Mler and Paul 1994), ‘multicanonical’ sampling (Wilding and
Miuller 1994), and sampling in an ensemble with fluctuating chain lengths (Escobedo and
de Pablo 1995).

For simulations of fluids in theV'VT ensemble there is another intensive variable of
interest, namely the pressuge In systems with additive pairwise potentiaigr) it is
usually calculated from the Virial theorem (Hill 1956, Wood 1968)

pV/NkgT =1—1/(6kgT) /OO g(M[de(r)/drldnr? dr (65)
0

whereg(r) is the radial density pair distribution function.
Equations (64) and (65) are very useful since combining them with thermodynamic
relations for the entropy such as

TS=pV+E—-Nu (66)

one can obtain all thermodynamic potentials of interest. Alternative methods for obtaining
free energyF = E — TS or entropy S rely on ‘umbrella sampling’ (Valleau and Torrie
1977) or thermodynamic integration methods, for example the relation for the specific heat
Cv

(08/0T)yn =Cv/T (67)

is integrated as
T
F=E— T/ [Cy(T"y/T|dT". (68)
0

We emphasize that this thermodynamic integration technique is very general, it applies
to both lattice and continuum models, and is particularly convenient in conjunction with
histogram reweighting techniques (Swendsél 1992). Of course, any other derivatives

of thermodynamical potentials can also be exploited: for example for Ising magnets the
relation for the magnetizatiom (equation (26))

H
m=—0F/dH)T F(T, Hy) = F(T, Hy) —/ mdH (69)
Hy
is particularly convenient (Binder 1981b). The key point of all these techniques
(equations (68) and (69)) is that thermodynamic potentials suéheae completely specified
by the independent thermodynamic variables describing the considered state, but do not
depend on the particular path on which one may think the system was brought from a
‘reference state’ (for whichF and S are known) to the desired state. Consequently, one
can choose the most convenient path for the problem under consideration.
For off-lattice fluids, of course, it is very natural to consider simulations not only in the
canonical ensemble\(V T') considered above, or in the grand-canonical ensembier),
where moves need to be considered where particles are added or removed from the system
(see e.g. Levesquet al 1984 for a discussion) but also in the constant pressure ensemble
(M pT) where the volumé/ is a dynamical variable to be included in the state variale
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in the average, equation (28). This is recognized from noting that (Wood 1968)
Jo~ dV expl-pV/keT1Zy(V,T)A

Jo~ dVexpl-pV/kgT]1Zy (V. T)

_Jodv [ dX expi—[pV + Hy(X)]/ksT)A

C e dv [ dX expi—[pV + Hy(X)/ksT])

(A)wpr =

(70)

whereX is the state vector in the phase space of the canonic ensemble. Since equation (70)
is formally analogous to the canonical average, equation (3), it is clear that one can
straightforwardly generalize the Monte Carlo sampling, takkig= (V, X) and modifying
equations (29) and (30) as follows:

WX - X')

WX - X)
One must take into account, of course, that the different ensembles of statistical mechanics
yield equivalent results in the thermodynamic limit only, while finite-size effects are different
(Hill 1963).

For simulations of solids, the anisotropy of the crystal structure may require to consider
boxes with different linear dimensions,, L,, L, in different coordinate axis directions.
Then it is also natural not to consider only uniform volume charégésbut rather separate
changesSL,, 6L,, andsL,, and to remember thgi as used above really is nothing but
the trace of the pressure tenshfs. In this context, we note that the virial relation,
equation (65) generalizes as follows;[= r; — ;]

=exp—[pdV + §H]/ksT. (71)

(72)

3€0(7'ij)>
a(rij)p

where ¢(r;;) is the total potential acting between particles at pointsr;. Following
corresponding molecular dynamics methods (Parrinello and Rahman 1980), where both the
size and shape of the box are dynamical variables, analogous Monte Carlo methods have
also been developed (Najafabadi and Yip 1983, Ray 1993). For more details on Monte Carlo
methods for off-lattice systems in various ensembles see also Frenkel and Smit (1996).

While for fluids the microcanonical\(V E) ensemble is realized, of course, if one
applies standard molecular dynamics techniques (Ciccotti and Hoover 1986, Sprik 1996),
the realization and application of the microcanonical ensemble for lattice systems such as
Ising or Potts models (Potts 1952, Wu 1982) has given rise to a longstanding discussion
(Creutz 1983, Bhanott al 1984, Harris 1985, Desait al 1988, Litzet al 1991, Hiller
1992, 1994, Gerling and idler 1993, Ray 1991, Hammrich 1993, Promberger ariidie
1995, Lee 1995, Grosst al 1996). Some researchers maintain that this ensemble has
practical advantages, particularly for the study of first-order phase transitidnie(H992,

1994, Grosset al 1996), even in comparison with the popular ‘multicanonical’ method
(Berg and Neuhaus 1992, Berg 1992), see section 5.3.

At this point we mention that it is sometimes convenient to define artificial
‘ensembles’ that are not found in the standard text books of statistical mechanics, but
can also be translated into an importance sampling Monte Carlo method: the ‘Gaussian
ensemble’ of Challa and Hetherington (1988) in a sense ‘interpolates’ between the
canonical and microcanonical ensemble; and particularly important is the ‘Gibbs ensemble’
(Panagiotopoulos 1987, 1992, 1994, Smit 1993, Allen 1996) for the study of gas—liquid
coexistence. There one considers two systems at the same temperature with particle numbers
Ni ., N, and volumesVy, V» such thatVy + Vo = Vit = constant\; + A, = constant,

1
HaﬁV/NkBT = (Saﬁ — G./\/ICBT<Z(TU)a
i#j
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but allows exchange of both particles and volume between the two boxes. For example, by
a choice of initial condition, one can ensure (at temperatures sufficiently below the critical
point) that one system equilibrates at the density of the gas and the other at the liquid density.
The chemical potential adjusts itself to its value at the coexistence gypygautomatically

(in the limit Viot — 00). This method outside of the critical region works rather well already
for rather small sizes of the total volumé,, and hence has found widespread practical
application (Allen 1996, Frenkel and Smit 1996). However, once more we add the warning
that finite-size effects differ in different ensembles and need careful consideration (see e.qg.
Mon and Binder 1992, Recht and Panagiotopoulos 1993, Bruce 1997).

4. Finite-size effects

Simulations deal with a much smaller number of degrees of freedom (typically the particle
number\ is in the range 1< N < 10°) than typical experiments\( &~ 10??). Finite-

size effects thus can be a serious limitation, particularly near phase transitions where such
effects are large. On the other hand, unlike experiment one can easily vary the system linear
dimension over a wide range as a control parameter (avoiding unwanted surface effects by
periodic boundary conditions), and apply the corresponding finite-size scaling theory (Fisher
1971, Barber 1983, Binder 1987a, 1992a, Privman 193wag 1996) as a powerful tool

of analysis for the simulation data. In this spirit, this section will provide a brief introduction

to the main ideas of the subject.

4.1. The percolation transition and the geometrical interpretation of finite-size scaling

Consider an infinite latticedcdimensional cubic lattice of volumg¢, lattice spacing being
unity, for L — oo) where each site is randomly occupied (with probabilify or empty
(probability 1— p), and define ‘clusters’ of neighbouring occupied sites (Stauffer and
Aharony 1992). There exists a critical valyg such that forp < p. there exist only
clusters of finite ‘size’ (= number of sites belonging to the clustér= 1, 2, 3,...) on the
lattice, while forp > p¢ an infinite cluster has formed that spans from one boundary of the
lattice to the opposite one. The probability that an occupied site is part of the percolating
cluster is called the percolation probabiliBs, (p), while a percolation susceptibility (p)

is defined in terms of the concentratiomg p) of clusters containing occupied sites,

X(p)=Y_"Cny(p)/p. (73)
(=1

Here the prime means that the largest cluster ffor p this is the percolating infinite
cluster) is omitted from the summation. Boj(p) and the percolation order parameter
P (p) exhibit critical singularities agp — pc| — 0, with critical exponents,, y, and
amplitudesB,,, I'%,

Pe(p) = B,(p/pc— D p>pc (74)
while per definitionP,,(p) = 0 for p < p, and
A —p/po) P < P
1;,;(17/170 VIR P > Pe.

In a finite lattice, x (p) cannot diverge but reaches a maximum of finite height only:
equation (73) then is a finite sum over clusters of finite ‘mdsdhfinitely large clusters

x(p) = (75)



Applications of Monte Carlo methods to statistical physics 517

would not fit on a finite lattice. Similarly, the percolation probabiliBs (p) does not
vanish at anyp > 0, but must attain small non-zero values as soop as0: percolation
only requires a string of. occupied sites running through the system, which occurs with
probability p* = exp(Lénp) — 0 asp — 0. Thus in a finite lattice the singularities
described by equations (74) and (75) are smoothed out: this rounding of the transition is
gualitatively obvious geometrically.

For a quantitative description of this finite-size rounding, we need the detailed properties
of the percolation clusters neat (Stauffer 1979). Calling the ‘mass’ of a cluster, the
mass distributiom, (p) satisfies a scaling property fér — oo,

ne(p) = £ "n{t’ (L — p/pc)} p = pc,t — o0 (76)
n(2Z) being a scaling function, and the exponents related tog,, y,,
T :2+ﬁp/(yp+ﬂp) o = 1/(717 +,3p)- (77)

The large clusters neafr; actually are ‘fractals’ (Mandelbrot 1982, Feder 1988), i.e. their
mass¢ and radius, are not related via space dimensionalitybut via a smaller ‘fractal
dimensionality’ds,

re = et £ — 00, p = pc. (78)

Noting that in a finite subsystem of linear dimensibna percolating cluster has = Ls,
we find a relation betweed; and z, since the probabilityP{"s (p.) that such a cluster
occurs that spans the subsystem is of order unity,

P (pe) ~ LY /

re=Lsg

o0

ne(pe) de ~ LIA(0) / 0T de A~ 1. (79)
(Ls/F)%

In a finite subsystem, percolation can occur via any cluster of linear dimengienLs

or larger, but these possibilities are mutually exclusive in this subsystem, and thus their
probabilities simply add up. For large) ", can be replaced by d¢, and using equation (76)

we arrive at equation (79), which yields further

L&A o 1 d=d/(t—1) =d—B,/v,. (80)

Since the first equation of equation (80) must hold for @gythe second equation follows,
using also equation (77) and the ‘hyperscaling relation’ (Fisher 1974)

dv, =y, +28,. (81)

In equations (80) and (81),, is the critical exponent of the correlation length which
describes the decay of the pair connectedness function,

&p < |p— pel™. (82)
The number of siteg in a cluster that spans the distantgis simply (equations (78) and
(80))

O, = (Ls/P) oc LS. (83)
Since the subsystem contain$ sites, the fraction of its sites belonging to such a spanning
cluster are of the order of

PE(pe) = L™y oc L™Fr/™, (84)
In equation (84), we have omitted the index s (for ‘subsystem’) filomsince the result
applies to a finite system with periodic boundary conditions as well. Relations such as

equation (78) also hold in finite systems essentially, as long asL: the finite size yields
a cut-off to the distributiom,(p) at the valuet; o« L% corresponding ta, = L.
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This argument also yields the rounding of the divergence of the percolation susceptibility,
equation (75), since the sum in equation (73) must be cut off asee Binder (1972),

lL
1P ()~ A/p) Y ni(p) (85)
(=1
and using equation (76) fgr = p. yields, with the help of equations (83) and (77)
197
x P (po) f 27T dE o @iﬁf oc LY/, (86)
0

Note that the self-consistency of this scaling description of percolation critical phenomena
and the scaling of the mass distribution can also be checked defipifrgm the average
cluster radius,

g =) "rttPni(p) / > Pni(p). (87)
=1 =1

Using equations (76) and (78) and transforming sums to integrals one readily finds
equation (82), if equation (81) holds.

To obtain the finite-size behaviour of™)(p) for p # pc but nearp,, we use again
equations (76) and (85)

L/
*P(p) ~ (1/p) /O e (L p/pe))de

/[(L/f)(l—p/ﬂc)””]"f

o (1= p/p) " 5 x TR dx (88)

where integration variables where transformed frénto x = ¢(1 — p/pc)*°. From
equation (88) we see that’)(p) depends onL only in the scaled combinatiof (1 —
p/po)’r o< L/&,: this is the principle of finite-size scaling that one must compare lengths,
‘L scales withé,’. Thus equation (88) can be rewritten as

xP(p) =@~ p/p) " F{L(L— p/po)*r} = L/ 3 (L/&y) (89)
where the scaling functiorf(2) = 2%/ j(Z constant), the constant being a (non-
universal) metric factor. The scaling functios and ¥ obviously describe a smooth
interpolation between the power laws equations (75) and (86). Of course, the explicit
expression resulting from equation (88) B¢ Z) is approximate only, since the sharp cut-
off of the integral atr, = L is an approximation. Thus the treatment given here is only
a justification for the general structure of equation (89). A similar result holds for the
percolation probability and for the spanning probability

P (p)=LPMP(LIE) L — 00, p— pe (90)

P (p) = Ps(L/E,) L — o0, p— pe. (91)
By writing the appropriate limits we have emphasized here that finite-size scaling holds
only asymptotically forp close top. and largeL, while for p not so close tg. (and L not
so large) corrections to scaling come into play (their origin is best understood in terms of
renormalization group arguments, see e.g. Domb and Green (1976)). In the finite-size scaling
limit, we see tha‘rPS(L) (p = p¢) should take ari-independent universal valu€g(0). This
property is useful for locating from simulation data—a plot Of;S(L)(p) againstp for
different L should yield a family of curves that intersect in a unique point, the abscissa of
this point isp.. This intersection method indeed works well in practice (Kirkpatrick 1979),
and also the finite-size scaling relations equations (89)—(91) have readily been verified for
the percolation problem (Heermann and Stauffer 1980).
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4.2. Broken symmetry and finite-size effects at critical points

We now discuss thermally-driven phase transitions where the state of the system changes
from the disordered phase at high temperatures to a spontaneously ordered state at a
temperaturel below the critical temperaturé. of a second-order transition, using the
Ising ferromagnet as a prototype example. The low-temperature phase is a state with non-
zero spontaneous magnetizatiemispon for zero applied fieldH = 0 (cf figures 6 and
7).

As described already in section 3.2, there is always a non-zero probability in a finite
system to ‘move’ from the state neangpon to the state with—mgpon: OF vice versa and
thus (m) = 0 for H = 0. The standard recipe (also useful for vector order parameters,
as they occur forXY or Heisenberg models, equations (35) and (36)) is to record the
root-mean-square order parameter (Binder 1972)

N 2\1/2 1 N 1/2
mims(T) = v/ (m?)7 = <<ZS,~/N) > = N( > <S,-SJ->T) : (92)
i=1

T i,j=1
Now the correlation functionr{= r; — r; is the distance between sitgs;)

G, T)=(SiS)r (93)
satisfies a power-law decay f@r = T (Fisher 1974)
G(r, Tp) = Gr=@=2m r— 00 (94)

with n the corresponding exponent aH the critical amplitude. We can approximately
evaluate equation (92) fdf = T;, using equations (93) and (94) and replacing the SUm
by an integral over distances from 0 id2 (N = L%), to obtain

N L/2

D (S8, o f ri Y drG(r, To) o« L2 (95)

i=1 0
and hence (Mller-Krumbhaar and Binder 1972)

m{P(Ty) o« (L2~4=MY2 o L7/ (96)

using scaling relations (Fisher 1974}2yp = y /v, d = (28 + y)/v. Also the fluctuation
relation for the susceptibility (cf equation (45)) yields (rememHes 0)

— 1 . Q. 2=n _ gv/v
keTx(T) = ;msm L L =L (97)
using again equation (95). Equations (96) and (97) are exactly analogous to the results
equations (84) and (86) for the percolation problem.

Of course, the analogy between the finite-size results for the Ising model and for random
percolation is no surprise at all: the mapping proved by Fortuin and Kasteleyn (1972)
between bond percolation and the ligit—> 1 of the g-state Potts model (Potts 1953, Wu
1982) provides a description of the thermal order—disorder transition of the Ising model (and
related spin models) as a percolation of ‘physical clusters’ (Coniglio and Klein 1980, Hu
1984, Swendsen and Wang 1987). Any state of the Ising lattice can be described in terms
of ‘geometrical clusters’ of, say, ‘down spins’ in a surrounding background of ‘up spins’
(Fisher 1967, Binder 1976). However, throughout the paramagnetic phase we encounter a
percolation transition of these ‘geometrical clusters’ when we vary the magneticHield
from strongly positive to negative values. Rather one has to distinguish between ‘active’
and ‘inactive’ bonds in a geometrical cluster. The probabititfor a bond to be active is

p=1—exp(—2J/ksT) (98)
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and only spins connected by ‘active bonds’ form a ‘physical cluster’ (Coniglio and Klein
1980). This rule can be proven (Fortuin and Kasteleyn 1972) by deriving a percolation
representation of the Potts model partition functibsyes Jp being the interaction constant

of the Potts Hamiltonian (note th&tpgys reduces tdHsing for ¢ = 2, choosingJ/, = 2J)

Hrots= —Jp ) 00, o=12..,4 (99)
(i)
Zpotts= Tr(s,) €XP(—Hpotts/ ks T) = Z pe(L— p)Nmg™e (100)

where Ny, is the number of bonds)N,, is the number of missing bonds, amd is the
number of clusters in a given bond configuration. The sum in equation (100) is over all
bond configurations.

For expressing the variables of interest, we now need two ‘cluster coordinates’ (Binder
1976), the cluster magnetizatien, = +¢ (the sign gives the orientation of the spins inside
the cluster, which we label as cl), and the number of active bonds in the cluster, which
we denote asgp. Denoting the number of clusters per lattice sites with these properties
as p(mg, ug), magnetization and energy per spin fdt= 0 are written, for a lattice of
coordination numbet,

m = chlp(mcl) P(mq) = Z p(mgi, el (101)
<Hlsmg /N =— <ch| %:Mclp(mcla Uugl) — ) = —gf(p(Nb)/N -1 (102)

remembering thaiV, is the total number of (active) bonds in a configuration. Also the
thermal averages of fluctuations can be expressed in terms of suitable properties of the
clusters; for example, the specific heat per lattice site becomes

C =0E/dT = [1/(NkeT?)]((Hiing) — (Hising)®)
= 32272/ (NksT?p*){(N§) — (Np)* — (1 — p)(Nb)}. (103)
Splitting off from P (m) the contribution of the largest cluster in the system, which we
denote asng’,
1
P(mg) = p'(mg) + Namd,mgf (104)

the absolute value of the magnetization is (D’Onorio De Méeal 1990)

(Iml) = <’ +ch.p<mcl>> (105)

Mg

While the susceptibility forT > T¢ is just the analogue of the percolation susceptibility,
equation (73),

keTx = ksT (d(m)/dH)r n—o = Y _m3P(ma) = Ze ne (106)

mg|

since P(mg) + P(—mg) = ny, for T < T, one must single out the contribution from the
largest cluster (that becomes the percolating clustetMor> oo) to obtain (D’Onorio De
Meo et al 1990)

keTx' = N((m®) — (Im)>) =Y _"¢Pn, + N(PZ) — (jm|)?)
¢

~ Y '0ny+ N((PZ) = (Poo)?). (107)
L
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The simple physical interpretation of equation (107) is, of course, that bé&lowhe
response function picks up contributions both from all finite clusters (the @‘pﬂzng,

only considered in the percolation problem) and from the fluctuations in size of the largest
(percolating) cluster. It turns out that estimating x’ from these relations in terms of
clusters is advantageous in comparison with the fluctuaton relations expressing them by
magnetization fluctuations, since equations (106) and (107) exploit the fact that there are
no correlations between different clusters: thus the statistical noise is less, the right-hand
sides of equations (106) and (107) are ‘improved estimators’. Similar ‘improved estimators’
can also be introduced for other quantities, for example the pair correlation function (Wolff
1989a, Janke 1994), wavevector-dependent susceptibility, and fourth-order cumulant (Baker
and Kawashima 1995, 1996). Since Monte Carlo ‘cluster algorithms’ (Swendsen and
Wang 1987, Swendseet al 1992, Wolff 1988a, b, 1989a, b, c, 1992, Edwards and Sokal
1989, Hu and Mak 1989, Wanet al 1989, Kandelet al 1990, Hasenbusch and Meyer
1991) are attractive because they reduce ‘critical slowing down’(Li and Sokal 1989, 1991,
Wang 1991, Heermann and Burkitt 1990, Tamayal 1990, Wolff 1992), one can apply
equations (101)-(107) at no extra computational cost. Figure 8 shows an example for the
d = 2 1sing square lattice. Itis clearly seen that for finite systems the percolation probability
Py = (ImZ’|)/N is always smaller tharim|), as expected from equation (105), although

in the limit N — oo both quantities converge to the spontaneous magnetization. Note
that even forN — oo the term N((P2) — (Px)?) must not be neglected ikgT ' in
comparison toy_, ¢2n, for T < T, although it is negligible fof > T, (one can show that
N((P2) — (Ps)?) o« L~?log? L for L — oo andT > T, see Margolina and Heermann
(1984)).

While in the percolation problem one hence can use the same expression, equation (73),
to obtain the percolation susceptibility fgr < p. and for p > p, this is not true for
the phase transition of the Ising model, equations (106) and (107) differ from each other
significantly.

This difference, of course, is intimately linked to the occurrence of spontaneous
symmetry breaking in the Ising model, already alluded to in figure 6 and equations (45)
and (46). As illustrated in figure 9, the fluctuation relation for the susceptikig®y =
LY ((m)%2—(m)?) = L?(m?) (for zero fieldH = 0) smoothly converges to the correct answer
for T > T, , but for T < T, it converges takgT x ~ L¢(|m|)? as L — oo, measuring the
fluctuations between the two phases with opposite magnetization, rather than the fluctuations
in a pure phase. On the other hakg? x’ as defined by equation (107) fér > 7. does not
converge to the right answer either: as one can easily work out from a Gaussian distribution
(Binder and Heermann 1988), = x(1 — 2/n) for L — oo. Thus yx’ diverges with the
same critical exponent gs does, but the prefactor (the critical amplitude) is reduced by a
factor 1— 2/7x.

The fact that the spontaneous symmetry breaking in phase transitions requires the use
of different fluctuation formulae on both sides of the transition is sometimes ignored in the
literature, which hence leads to confusion: for a finite system in zero field, and hence
L4 ((m?) — (m)?) is not a useful quantity, if a single spin-flip algorithm is used. Fox T,
the observation time,,s of the simulation will be much smaller than the ‘ergodic time; (
needed to move from one peak Bf (m) in the lower part of figure 6 to the other one, and
hence(m)? ~ (|m|)?, and thenL9((m?) — (m)?) will coincide with kg7 x! For T > T,
tobs Will exceed t. by orders of magnitude, and them)? ~ 0, i.e. one obtainggT x
(figure 9). However, in the region whergs and . are of the same order of magnitude, the
magnetization will jump between the two peaksRf(m) only very infrequently, and then
one obtains rather erratic results Bf((m?2) — (m)?), since(m) is not well defined here.
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Figure 8. (a) Magnetization (full curves) and percolation probability (broken curves) for the

d = 2 nearest-neighbour Ising ferromagnet plotted against reduced temperature for three system
sizes as indicated. Periodic boundary conditions were used throughout, and all data were
generated with the algorithm of Swendsen and Wang (1987). From D’Onorio deeMab
(1990). (b) Normalized fluctuation of the largest clustmc(Pozo) — (Pxo)?), full curves, and
second moment of the cluster size distributidn, £2n,, broken curves, plotted againgy 7,

for the same model as in (a). From D’Onorio De Metoal (1990).

From the percolation interpretation of the transition, it is clear that finite-size scaling

expressions analogous to equations (89)—(91) hold(fiat), x, x’ and a further useful
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Figure 9. Schematic temperature variation of the normalized susceptibiktig@s( (L, T) =
Li((m?) — (m)?) = LYm?) andkgTx'(L, T) = LY((m?) — (Im|)?). The dash-dotted curve
ilustrates the observed behaviour faif ((m?) — (m)?) in simulations with the single spin-
flip algorithm: for observation timesos of the order of the equilibration timee (note
Inte o LY=L £y (T), where fing(T) is the interfacial tension) one finds an interpolation between
ksT x (at high temperatures whergs > 7e) andkg T x’ (at low temperatures whergps < 7e).

For small L and largerops this ‘transition’” may be rather far beloW, and should not be
confused with the phase transition. Hor~ oo, of course, this temperature region between the
temperature whergps = e andT = T¢ shrinks and ultimately vanishes: symmetry breaking at
Tc simply appears via ‘ergodicity breaking’. From Binder and Heermann (1988).

guantity, the normalized fourth-order cumuldnt (Binder 1981a) of the distributioR; (m),
Ur = 1— (m*)/@B(m*?). (108)

In terms ofe = T/Ts — 1 we have, withM, M, %, %, ¥’ % . U, U being suitable scaling

functions
(ml) = L~P/"MI(L/E) = L~/ M (e L") (109)
keTx = L""{(L/€) = LYV % (eL*") (110)
ksTx' = L""3'(L/§) = L% (eLY") (111)
U, = U(LJg) = U(sLYY). (112)

Figure 10 shows an example where the scalinggd x’ (equation (111)) is tested. It
must be emphasized that all these scaling relations are only supposed to hold in the limits
L — oo, ¢ — 0 (keepingsLY" or L/ fixed). While it is gratifying to note that in the
example shown in figure 10 rather small(such asL = 20 ind = 2) already satisfy this
finite-size scaling hypothesis, one cannot imply that this ‘data collapsing’ on the scaling
function will work for rather smallL in general (in fact, when one has crossover from
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Figure 10. Finite-size scaling plot okgT x'L~"/" against|¢|LY", wheree = T/T. — 1,

for the two-dimensional Ising model with nearest-neighbour ferromagnetic interaction at the
square lattice. The exactly known value Bf (Onsager 1944) and of the critical exponents

(v =1,y =7/4, see e.g. Fisher (1974)) are used. Three different lattice sizes are included, as
indicated in the figure. The upper branch of the scaling function refef® to T, the lower
branch toT > T;. From D’Onorio De Meocet al (1990).

one universality class to another, e.g. from the Ising class to mean-field behaviour (Mon
and Binder 1993, Deutsch and Binder 1993a, Bineteal 1996, Luijtenet al 1996) finite-
size scaling only works fol. > &g0ss With &cross @ length characterizing this crossover
(Binder and Deutsch 1992)). For smdll one thus must expect corrections to finite-size
scaling. Thus methods where one ignores such corrections and tries to estimafg doath
the exponents /v, y/v (and/or8/v) from a simultaneous fit to a scaling function (‘data
collapsing’, see e.g. Binder (1974), Landau (1976a, b) and Binder and Landau (1980) for
some well known examples), may suffer from systematic errors. This criticism also applies
to recent claims (Kim 1993, Brown and Cittan 1996) that high precision can be gained by
extrapolation from small lattices, as pointed out by Patrasciou and Seiler (1994) and Holm
and Janke (1997).

In an attempt to estimaté. unbiased from estimates of critical exponents, Binder
(1981a) suggested the plotting &, againstT for various choices of, since in the limit
where finite-size scaling holds these curves should intersect in a common intersection point
U(0) at T, and moreovetU/ (0) is universal (though dependent on the type of boundary
conditions). In fact, other dimensionless moments of the order parameter distribution may
be used in the same way, for examte?) /(|m|)?> (Deutsch and Binder 1992). Figure 11
presents a typical example of the accuracy that is reached by such techniques, namely about
0.3%, even for rather complicated models such as polymer mixtures. Of course, a close
inspection of figure 11 shows that the three curves do not intersect precisely in a point, but
there is rather a small temperature interval over which these intersections are spread out. To
some extent this spread is due to statistical errors, to some extent to corrections to scaling.
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Figure 11. Plot of (m?)/(|m|)2 against reduced temperature, for a lattice model of a symmetrical
polymer mixture (using the bond fluctuation model with chain lengfis= Ng = N = 128 at

volume fractiong = 0.5 of occupied sites, and a square well interactos eag = —ean /2 =

—epp/2) of range+/6). Three lattice sizes are shown as indicated, and a semi-grand canonical
ensemble is used (allowing attempted moves while chains change their identity, B\ at

fixed configuration, in addition to local hopping moves that relax the chain configurations).
Smooth curves are based on multihistogram extrapolations (Ferrenberg and Swendsen 1989).
From Deutsch and Binder (1992).

If T; is known the exponent/v can be estimated from a log—log plot @fz|) against
L at T, using equation (109). The expongtv can be estimated both from log—log plots
of kgT x or kgT x’ againstL at T;, or alternatively from a log—log plot of the maximum
value kg T xmax @gainstL (this has the advantage that a possible inaccurack aoes not
matter). From equation (111) we realize that the location of this maximum can be used to
estimate the exponentil, since the maximum occurs at some fixed vatye= e LY of
the scaling functiondy = T/ T: — 1, T(L) being the temperature of the maximum)

Tm(L)/Te — 1 = xpLY" L — oo. (113)

Alternatively, one can use the slope@f — U (0) o ¢ LY/* for smalleLY" (equation (112)).
In addition, one can use the position of the maximum of the slop&;0fgainst7, the
specific heat maximum, the maximum of the temperature derivativgrdf or (m?) etc
(Ferrenberg and Landau 1991). One can also use such quantities to try to obtainiboth 1
and T from a simultaneous fit.

In principle, for obtaining very precise estimates the effect of correction terms must be
considered, for example, 8t we expect instead of equation (97)

ke Tex (Te) = LYV 7 (0)(1 + xO"L ™ o 4 ... (114)

x°" being another amplitude factor and, the leading correction exponent. Such a
correction shows up as a mild curvature on the log—log plot, and is hence easily missed. In
order to take this correction into account, it is advisable to consider pairs of gizég)
for scale factord > 1, and study the ratio (Binder 1981a)

In[x (L, Tc)/x (L, Te)] _ y  xSO"L™*en

A ) ) L T 115
Inb v Inb ( )+ ( )
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Thus the recipe is to plot the left-hand side of equation (115) agaimsy—: for each
choice ofL one should obtain a curve which will extrapolate linearly to the same vali8 (
as(Inb)~! — 0. This method was also tried with some success for non-trivial cases such as
two-dimensional Ising antiferromagnets with competing next-nearest-neighbour interactions
(Landau and Binder 1985), which belong to the universality class ofxtiemodel with
cubic anisotropy and have non-universal exponents (Krinsky and Mukamel 1977).
Comparing equations (109) and (110) and using the fact @hdt;, oc L=2/" we
immediately see that the fluctuation relati@ag7y = L¢(m?) yields the hyperscaling
relation (Fisher 1974)y /v = d — 28/v: finite-size scaling as written in equations (109)—
(112) implies hyperscaling (Binder 1981a,&8m 1982). However, there do indeed occur
situations where hyperscaling does not hold, and then a generalization of finite-size scaling
is necessary. A well known example are systems at dimensionaliti®ve the marginal
dimensiond* above which mean-field theory of critical behaviour starts to become valid
(Fisher 1974). For Ising systems (as well as for theector model)d* = 4, and clearly
the mean-field exponentsme = 1, vur = 1/2, Bur = 1/2) do not satisfy hyperscaling for
d > 4. In the general case (including anisotropic system shapes (Binder and Wang 1989),
free surfaces, etc) several characteristic lengths come into play, and the behaviour can be
very complicated (Bezin and Zinn-Justin 1985). However, for systems with‘ageometry
and fully periodic boundary conditions a simple modified form of finite-size scaling holds
(Binder et al 1985), the correlation length being replaced by a ‘thermodynamic length’
¢t (Binder 1985) defined by

G =kgTym?ac (L—T/T) ") =1 -T/T;)2 (116)

where, in the last step, mean-field exponents were used. Equation (116) can be motivated
by noting that forT < T, and largeL the order parameter distributiop; (m) can be
approximated as a sum of two Gaussians centred at the spontaneous magnetization (cf
figure 6), forH = 0,

—(m — mspom)zLd —(m + mspom)zLd
ex ex 117a
pr(m) p[ T + exp T (1174)
and the arguments of the exponentials can be scaled as follows:
(m =+ mspont)zLd N (m/mgpontt 1)2 L? _ (m/mgpontt 1)2 (L>d (117)
2k T x' 2 kBTX/mgpont 2 tr)

While some consequences of this mean-field finite-size scaling initially seemed to be in
disagreement with simulations on five-dimensional Ising models (Binder 1985, Rickwardt
et al 1994), recently the source of the difficulty has been traced down to corrections to
scaling (Mon 1996, Luijten 1997, Parisi and Ruiz-Lorenzo 1996).

Another violation of hyperscaling is believed to occur in random-field Ising models
(RFIM) (for reviews, see e.g. Imry 1984, Nattermann and Villain 1988, Rieger 1995) and
random-field Potts models (RFPM) (Eichhorn and Binder 1995, 1996). If these systems
have a second-order transition from the ferromagnetic to the paramagnetic state at all, the
exponents are believed to satisfy a modified hyperscaling law (e.g. Schwartz 1991)

y+28=(d—0)v 0=2—n. (118)

In spite of equation (118) the standard finite-size scaling relations equations (109)—(111)
still hold, notwithstanding the fact that thefr' (m?);, oc L¢=2%/V: in this case(m)? is
non-zero, due to the excess of random field of one particular sign in any finite sample, and
one must distinguish between the ‘connected’ susceptibitigy ¢ = L ([(m?) — (m)?])av
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Figure 12. Plot of the cumulant/ (T¢) for the two-dimensional Ising transition in thin films
of thicknessD with competing surface field$/; = —Hp = 0.55J against the crossover
scaling variablecrosy/ L. Here &cross = explecD/2), Wherefcgl = &1+ w/2), & being the
true correlation length in the bulk, and(~ 0.86) is the universal amplitude associated with
interfacial stiffness. The arrow on the ordinate shows the universal value ef the? Ising
universality class{/* = 0.615. From Bindeet al (1996).

or—r, L") and the ‘disconnected susceptibilitysis = LI[(m)%]ay, [...]av Meaning a
‘quenched average’ (Binder and Young 1986) over the random-field configurations. While
xdis(T = To) o« LYV and y satisfies hyperscaling + 28 = dv), in the connected
susceptibility a smaller exponey = y/2) results, because the two leading terms cancel
each other, and only a subleading correction remains. This is only possible because in the
scaling limit of the distributionP, (m) the position of the peaks scale with a less negative
exponent(—g/v) than the width((y /v —d)/2). Since forL. — oo at T, P, (mm) becomes a
sum of delta functions, the cumulant intersection method is less udéfulequation (108))
tends to 23 at T, as in the low-temperature phase, and there is no well defined intersection
point (Eichhorn and Binder 1996). In contrast, for other random systems such as spin glasses
(Binder and Young 1986) or Potts glasses (Binder and Reger 1992) the cumulant intersection
method has been the most useful method to check for the existence of static phase transitions
in thermal equilibrium (Young 1996), since the lack of cumulant intersections can be taken as
evidence that the system is at or below its lower critical dimension for a spin glass transition.
Non-trivial extensions of finite-size scaling are necessary to deal with tricritical
phenomena (Wilding and Nielaba 1996) and anisotropic critical phenomena, where the
correlation length diverges with a (larger) exponentin a distinct direction(§; o
|1— T/T¢|~") than in the perpendicular directiam) (£, oc |1 —T/Tc|™"*, v, < v)). The
latter case occurs at uniaxial Lifshitz points as they occur for the anisotropic next-nearest-
neighbour Ising (ANNNI) model (Selke 1988), for critical wetting transitions (Dietrich
1988), and—Iast but not least—for driven systems far from equilibrium, such as the charged
lattice gas under the action of an electrical field (Schmittmann and Zia 1995).
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Denoting the linear dimensions of the system in the parallel and perpendicular directions
asL or L, respectively, an extension of finite-size scaling to this case (Binder and Wang

1989) showed that in addition to the variabléﬁ/”" (cf equations (109)—(112)) one needs

a second variable, a generalized aspect rIaFi‘d”” /L, (this factor reduces to the standard
aspect ratioL /L, for isotropic critical phenomena, of course, needed to describe shape
effects near criticality, see Binder and Wang (1989) and Albanal (1989a)). After a

long controversy about the critical behaviour of the two-dimensional driven lattice gas a
finite-size scaling study along these lines (Wang 1996) finally obtained consistency with
the field-theoretic predictions. We return now to ‘simple’ critical phenomena such as the
liquid—gas transition but consider systems that lack the particular particle—hole symmetry
of the Ising lattice gas model, for example off-lattice fluids. Not only has then the critical
point to be searched for in a two-dimensional parameter space (tempefatanel the
chemical potential, for instance), but there are also rather strong corrections to scaling
induced by a coupling between order parameter density and energy density fluctuations
(Wilding and Bruce 1992, Wilding 1993, 1995, Wilding andiNér 1995). The critical part

of the energy density scales withas L~~%/" wherea is the specific heat exponent (e.g.
Milchev et al 1986), and this needs to be disentangled from the order parameter that scales
as L~P/V. Wilding and Bruce (1992) and Wilding (1993, 1995) solved this problem by a
linear transformation from the densigy and energy density to the appropriate ‘scaling
fields’. Using this technique in the context of grand-canonical simulations of simple fluids,
a satisfactory analysis of their critical region became feasible (Wilding 1995, 1996). Also a
successful extension of this concept to asymmetrical polymer mixturéaBgivand Wilding

1995) was given. For critical properties, these techniques are superior to both the ‘Gibbs
ensemble’ method (Panagiotopoulos 1987, 1992, 1994, Smit 1993, Allen 1996) and standard
finite-size scaling applied to subboxes (Rovetal 1990, 1993).

Thus, finite-size scaling techniques have become a very powerful tool for analysing
critical phenomena by computer simulations. Nevertheless, there are still problems applying
this approach, in particular when one considers crossover from one universality class to
another (Binder and Deutsch 1992, Deutsch and Binder 1993a, Mon and Binder 1993,
Luijten et al 1996, Binderet al 1996). Then the scaling function¥, ¥, ¥/, and U
in equations (109)—(112) not only depend on the variabfé (which vanishes af)
but on a second variablé /&0 Ecross DeINg the correlation length in the centre of the
crossover region. Asymptotic criticality is reached only fors> &5 and the cumulant
intersection for locatingc works only in this limit, since, af, U is not a constant but still
a function ofL /&.0ss See figure 12 for an example. Another particularly intriguing problem
is the crossover betweefrdimensional critical behaviour and — 1) dimensional critical
behaviour in thin films (Binder 1974, Freiret al 1994, Rouauliet al 1995), where it is
unclear to what extent such systems can be characterized by an effective dimensigpality
in between these dimensions. Particular difficulties also occur for the crossover from ‘pure’
to ‘impure’ behaviour in systems with random impurities (Wagtgal 1990b, D’Onorio
de Meoet al 1995) or random fields (Rieger 1995, Peregtaal 1993, 1995, Eichhorn
and Binder 1996). For such problems, finite-size techniques are successful only if a huge
computational effort is invested in the quenched averagé,| over the random samples
(Rieger 1995), and often the lack of very efficient algorithms is a severe limitation.

4.3. First-order versus second-order transitions; phase coexistence and phase diagrams

In an infinite system, a first-order transition is characterized (Binder 1987b) by a jump in first
derivatives of the thermodynamical potential and by delta-function singularitites in second
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Figure 13. Schematic variation of the specific heat and internal energy with temperature near
a temperature-driven first-order transition &t (left part). The energy jumps front_ (for

T — Tg) to ET (for T — T), Ex — E_ being the latent heat (this jump gives the delta
function in the specific heat). The full curve in the lower part shows the equilibrium behaviour
in a finite system (observed faghs > 7¢), While broken curves indicate the hysteresis (metastable
states) that one may observe fg§s < 7e. In the right part, the variation of the susceptibility and
magnetization at the field-driven transition of the Ising modet/at 0 is shown schematically.
Now the delta function singularity of represents the magnetization jump frenMsp to +Msp,.

Again for M(H) the full curve shows the equilibrium behaviougsg > te), while broken
curves indicate metastable states (g < te). From Binder and Heermann (1988).

derivatives (figure 13). In finite systems, these singularities again are rounded and shifted
(Imry 1980, Fisher and Berker 1982, @é& and Nightingale 1982, Cardy and Nightingale
1983, Privman and Fisher 1983, Binder and Landau 1984, Fisher and Privman 1985, Challa
et al 1986, Privman and Rudnick 1990, Borgs and Kotecky 1990, Betgd 1991, Lee

and Kosterlitz 1991, Herrmanet al 1992, Vollmayret al 1993, Tsypin 1994).

Let us first consider the simplest case, the field-driven transition in the Ising system
for T < T;, where the symmetry of the problem implies that the transition is only rounded
by finite size but not shifted. The behaviour is understood most simply be generalizing
equation (114), including the dependence on magnetic field (Binder and Landau 1984).
The weights of the two peaks are no longer equal, but rather given by Boltzmann factors
involving the Zeeman energy: Hmspond.?. This yields, forL. — oo andm near one of
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the two branches of figure 13,
Pp(m) eXFmespontLd/kBT) exp(—(m — Mspont — X/H)ZLd/kBT}
+ eXFX_HmspontLd/kBT) exp{—(m + mspont— X/H)zLd/kBT}~ (119)

Here we have taken into account that fdr# 0 the Gaussian peaks occur no longer for
m = £mgpontbut rather form = mspont+ x'H. This approach yields for the magnetization

(m) = x'H + msponttanr(HmspontLd/kBT) (120)
and thus the rounding of the singularity of the susceptibility is described by
X(H.T.L) = x'+mo(L?/ksT)/ cos(Hmspond * / ks T). (121)

Thus the delta function is smeared out into a peak of height proportional tand of

width AH proportional toL~“. Figure 14 shows that in thé = 2 Ising ferromagnet

this simplified description (equation (119) ignores contributions with inhomogeneous order
parameter distributions containing interfaces in the finite system, see section 4.4) works
rather well even for very small systems.

The symmetryx(H,T,L) = x(—H, T, L) of the Ising model can be broken, for
example, by multispin interactions (Binder and Landau 1989, Borgs and Kappler 1992), by
boundary fields (in systems with free surfaces, see e.g. Fisher and Nakanishi (1981), Albano
et al (1989b), Binder and Landau (1992)), etc. In this case the ‘transition’ (monitored by
the peak position of) in the finite system no longer occurs Ht= 0 but rather at a shifted
field Hy, Hy oc L™*.

The first case (asymmetric bulk transition) leads to a shift expohest 4 (Binder
and Landau 1984), i.e. the shift is of the same order as the rounding. In the second case,
symmetry breaking boundary fields (note that for the gas—liquid transition of fluids this
case is called ‘capillary condensation’), the shift is much larger than the roundiag],
because it is controlled by a competition of surface and bulk terms.

While the symmetry of the ordinary Ising model (without multispin interactions,
boundary fields, etc) implies that at the transition (#r—= 0) the two peaks ofP; (m)

(figure 6, equations (1BJ and (119)) have both equal height and equal weight, some
confusion has arisen (Chalkt al 1986) over which of these two properties carries over
to the transition atH; # O in the asymmetric case. It now has been rigorously proven
(Borgs and Kotecky 1990, Borgst al 1991) and nicely confirmed by simulations (Borgs
and Kappler 1992) that the ‘equal weight rule’ (Binder and Landau 1984) is correct, and
one now has a better understanding (Tsypin 1994) of why the ‘equal height rule’ (Challa
et al 1986) is incorrect.

This ‘equal weight rule’ has become a convenient tool for establishing phase boundaries
of off-lattice fluids (Wilding 1995, 1996) and asymmetric mixtures (Deutsch and Binder
1993b, Deutsch 1993, #ler and Binder 1995, Miler and Wilding 1995). While in the
Ising magnet (or the isomorphic lattice gas model) phase coexistence ocdirs & and
hence only temperature needs to be varied to loggtao simple symmetry relates the two
coexisting phases in the general case. Then it is non-trivial to locate the chemical potential
uc(T) (or chemical potential differencauc(T), in the case of the mixture) where phase
coexistence occurs. Near the critical point it is convenient to use histogram reweighting
(Ferrenberg and Swendsen 1988) to sanilén) over a sufficient range of values in the
(T, ) (or (T, Awn)) plane. Definingm* in the region whereP, (m) has a double-peak
structure as the value whefe?) — (m)? is maximal, the weights of the two peaks are
equal. For the case of an asymmetric (polymer) AB mixture with pairwise interactions
ean = Aegp, With & # 1, the order parameter for chain lengtNg = Ng = N can still
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Figure 14. (a) Susceptibilityx (H, T, L) of nearest-neighbour Ising square latticeg gl /J =

2.1 plotted against magnetic field for varioliss. Curves are guides to the eye only. (b) Same
data replotted in scaled forny(H, T, L)/L? plotted against scaled fieltf .2/J. The arrow
indicates the asymptotic valuegpoml /kgT calculated from the exact solution (Yang 1952).
Note thatkg T/ J = 2.269 for the Ising model (Onsager 1944). The broken curve is the scaling
function cosit?(...) from equation (121), omitting the additive constatit From Binder and
Landau (1984).
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be chosen asi1 = (np — ng)/(na + ng), Wherena, ng are the numbers of A, B chains in

the system, as in figure 11. However, while in the fully symmetric case= 0, m* is
different from zero in the general case. The weights of the A-rich and A-poor phases then
are defined as (Deutsch and Binder 1993b)

m* 1
Ppoor = /1 Py (m) dm Prich = / Py (m) dm. (122)
For implementing the equal-area rule it is convenient to use the rRatd these weights
defined as
1 for Au = Auc(T)

R = min{Ppoor/Prich’ Prich/ Ppoor} —> { (123)

L=oo | 0 else
or the connected part of the cumulabif™(T) = 1 — (m*)conn/(3(m?)?). Both R and
Ur°" have very sharp peaks Atuw = Auc(T) (Deutsch 1993, Deutsch and Binder 1993b).
Varying T along the lineAp = Auc(T) in the (T, Ar) plane one now can study;°™" or
ratios such a$m?)/(|m|)?, cf figure 11, and obtain bot#, and the coexistence curve from
a finite-size scaling analysis with high precision.

We now turn to thermally-driven first-order transitions, using the Potts model,
equation (99), as an explicit example. At the transition pdint T, the energy jumps
from E_ to E, (figure 13), i.e. the free energy branch&s(T) and F., (T) intersect at a
finite angle,F. = EL — TS+, with F,.(T,) = F_(T;). ThusAF = F, — F_ vanishes at
Te, and neafT, we can expand linearly idT = T — T, to express weight factows, , a_
of these phases as

ar = eXp(FAFLY/(2kgT)} ~ exp{£(E, — E_)ATLY/(2kgT?)}.  (124)

Of course, we must take into account that in thetate Potts model there is a single
disordered state but distinct ordered phases.

The order parametern: of the Potts model involves am = ¢ — 1)-dimensional space,
and the distributionP; (m) is anisotropic in this space (e.g., for= 3 sharp peaks occur
near(m1, my) = (1,0), (—1/2,/3/2) and (—1/2, —v/3/2), respectively, see Vollmayet
al (1993) and Stephanow and Tsypin (1991)). It is then convenient to study either the
distribution of the energyP; (E) (Challa et al 1986) or the distribution of the absolute
value of the order parameté (m) (Vollmayr et al 1993). Approximating each peak by a
(multivariate) Gaussian foP, (m), one finds

Lnd/Z a+mn—l ox ( mZLd ) ga_ Ld/2 p{_ (m _ mSpont)ZLd }

Pr(m) o - ex
L(m) X% ay +qa- 2ksT X+ ay +qa_ 1?2 2ksT x_

(125)

wherey, andy_ characterize the order parameter fluctuations in the disordered and ordered
phases, respectively, amtk,ont is the order parameter & — 7; . Similarly, the energy
distribution becomes (Challet al 1986, Borgs and Kotecky 1990, Borgsal 1991)

a
PL(E) x Csz exp((E — EL — CLAT)2LY/(2kgT?C,)}
+

+% expl(E — E_ — C_AT)?L?/(2kgT*C_)) (126)

C, and C_ being the specific heats of the coexisting disordered and ordered phases,
respectively.
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Equations (125) and (126) form the basis of the phenomenological theory of finite-size
effects at first-order transitions. Again it is convenient to introduce suitable fourth-order
cumulants,

(1) = {[m™ /(M1 01500 — [(m*) /(m*)?] 7.1}

< ALm®) /(m*) 11 o0, 500 — [(m*) /()] r—0.L 00} (127)
and

VL =1—(E%/(3(E??). (128)

One then can show (Volimayet al 1993) thatg; (T) develops a minimum alp,,, that
tends to—oo as LY and an (approximate) crossing point @fcesd ~ 1 —n/(2g). The
PoSitions Trin, Teross SCale as

Trnin — Te < L™ Teross— Te o L™ (129)

This behaviour is illustrated in figure 15.
In addition, the energy cumulant develops a minimum that carries information on the
latent heat,

2 1((EL—E_)E.+E_))? 4
mn_ & —
Vit=3-3 { T } +O(L™%) (130)
the position of this minimum being at
Ty(L)/Te — 1= {keTe/L*(Ey — E_)}In(qE? /E?) (131)

and also the position of the specific heat maximum contains a similar shift proportional to
the inverse volume,

To(L)/Te — 1= {kgTo/L)(E; — E_)}Ing (132)
the height being again linked to the latent heat,
CM™ = (Cy +C_)/2+ (Ey — E_)*L?/(4ksT?). (133)

Since the temperature regidT over which the rounding of the delta function peak
occurs is just given by taking the argument of the exponential functions in equation (124)
of order unity,

8T = 2kgTZ/[(E+ — E_)L] (134)

we conclude that rounding and shifting of the specific heat peak are of the same order of
magnitude, and the shift in the position of the minimagef7) and V, is also of the same
order of magnitudgoc L~¢). However, on this scale the shift of the crossing points of

gL (T) is negligibly small (figure 15), namely proportional io?. Therefore, the cumulant
intersection method is useful to locate any phase transition, irrespective of its order. For
first-order transitions, in principle the best method (Boeggsl 1991) for locatingT: is to

look for intersection temperaturd$ of energiest (T, L) = (E) and E(T, 2L),

E(T, L) = E(T;, 2L) (135)

sinceT; should differ fromT; only by exponentially small corrections.

However, it must be stressed that the description presented in equations (124)—(134)
is greatly simplified and phenomenological, it holds only fors> &, , &_, the correlation
lengths in the two coexisting phasesZat High-precision studies of the Potts model in
d = 2 with ¢ = 8, 10, and 20 (note thak,, E_, T, are known exactly for allj, see Wu
(1982)) have shown that one easily makes systematic errors in the estimafionaoid £ _
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Figure 15. (a) Plot of g (T) (equation (127)) against the normalized temperature distance
—A(T —Tg), whereA is the scaled latent heat, = (E_ —E+)X,/(m§pomTc), for a susceptibility
ratiox2 = x,/x_ = 4. Parameter of the curves (calculated from equation (125)) is the rescaled
linear dimensiory = L(mgponJZkBTcx,)l/“. (b) Plot of g, (T') as obtained from Monte Carlo
simulations for the three-state Potts model/ie= 3. From Vollmayret al (1993).

if the limit L > &, & is not reached (Billoireet al 1992, 1993). In contrast, Gross al
(1996) suggest that a much faster convergence occurs in the microcanonical ensemble. At
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this point, we note also that the computationally most efficient way to locate a first-order
transition often is not the finite-size scaling method (both the multicanonical sampling (Berg
and Neuhaus 1992) and the microcanonical one (Gebs$ 1996) then involve a study of
states with energiek in the intervalE_ < E < E., which are controlled by configurations
with slowly relaxing interfaces), but the simple thermodynamic integration method, where
one studies pure phases throughout. An example for this statement is provided by the
Ising model on the face-centred cubic (fcc) lattice with nearest-neighbour antiferromagnetic
interactions in a magnetic fiell: there occurs for small enough fields an ordered phase with
two sublattices with positive magnetization and two sublattices with negative magnetization
114 1), while for larger fields another ordered phase with three sublattices with positive
magnetization(t11J) is stable. This problem is isomorphic to the problem of order—
disorder phenomena for binary (AB) alloys on the fcc lattice (for example: CuAu-alloys,
see Binder 1986 for a review), and although the phase diagram of this model is studied
since nearly 60 years (Shockley 1938), it is still incompletely understo@dn(Kereret al

1996)! The problem is the location of the triple poifit between the disordered phase,
the ‘AB phase’(11]J) in spin representation) and the 3B phase’'(111]). While in

the molecular field approximation (Shockley 1938) such a triple point does not even occur
(the AsB phase and AB phase enclose the AB phase, and a direct transition from the
AB to the disordered phase occurs only in one point in the phase diagram, in which the
A3B and AB; phase boundaries meet), more sophisticated treatments yield triple points,
but the precise location has been rather controversial (estimatds fange from7; = 0

to T; ~ 1.5J/kg, see Binder 1986). Studies of this problem with finite-size scaling are
very difficult, due to the high ground-state degenerancy of the model and the fact that one
deals with more-component order parameteraniiknereret al 1996). However, using large
lattices (L = 64, i.e.N = 4.64° = 1048576 lattice sites) one can obtain the phase diagram
rather precisely (figure 16). However, even a million lattice sites is not enough to resolve
the width of the two-phase coexistence regions near the triple point—which could also be a
new type of multicritical point. Substantially larger lattices would be needed to clarify this
problem!

Unfortunately, this example is not atypical, but distinction of weak first-order transitions
from second-order ones often is not unambigously possible, or at least very difficult! A
longstanding and experimentally relevant problem is the transitiorp @fdsorbed as a two-
dimensional monolayer on graphite from the ‘herringbone structure’ at low temperature to
the orientationally disordered plastic crystal phase at high temperatures @lar41994).

Since thermodynamic integration is less convenient for continuous degrees of freedom, in
this case the (weakly) first-order character was established from a study of orientational
correlations at both sides of the transition. Another particularly hard problem is the melting
of hard disks (Webeet al 1995): although the Monte Carlo method in statistical physics
started with the consideration of the equation of state of this system (Metrogtois
1953), it turns out that the width of the two-phase coexistence region is still unknown (early
estimates, e.g. Alder and Wainwright (1962), overestimated the density jump substantially).

4.4. Different boundary conditions; surface and interface properties

Choosing periodic boundary conditions (or screw periodic boundary conditions, which
are used for lattice models storing lattice sites in a one-dimensional array going through
the lattice in a typewriter fashion) are useful to focus on bulk properties of the model,
undisturbed by surface effects. However, sometimes one is interested in surface or interface
properties, and then a different choice of boundary conditions may be useful. For example,
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Figure 16. (a) The phase diagram of the nearest-neighbour Ising antiferromagnet on the fcc
lattice in the field-temperature plane near the (ABJ|)-AzB(111J) transition line. The
transition points were obtained by thermodynamic integration (full symbols) or by direct
inspection of the order parameter hysteresis loops (open symbols). All transition lines are
of first order (note that the lines connecting the points are guides to the eye only). Errors
are not shown, since error bars are always smaller than the symbol size. (b) Same as (a) but
in the magnetization—temperature plane. The first order lines of part (a) correspond to two-
phase regions, which become extremely narrow as the temperature approaches the triple (or
multicritical) point. From Kammereret al (1996).

for studying the properties of small magnetic particles one may simply simulate an Ising
or Heisenberg model on a lattice with linear dimensidns L,, L. in the three lattice
directions and use ‘free surface’ boundary conditions (i.e. neighbours adjacent to the surface
are just missing). Of course, one can generalize this boundary condition to small particles of
arbitrary shape, for example, approximately spherical particles (Betde1970, Wildpaner
1974), and it may be of physical interest to consider surface effects more complicated than
simply ‘missing neighbours’, such as exchange interactions that differ in the surface from
their value in the bulk (Binder and Hohenberg 1974), surface anisotropies or surface fields,
etc. The same choices also apply to the simulation of thin films, where one usually chooses
aL x L x D geometry with two freel. x L surfaces but periodic boundary conditions in
the x, y-directions parallel to these surfaces (Binder 1974). We shall not give any details
here but rather refer to recent reviews (Binéd¢ml 1995, Landau 1996).

Somewhat more involved is the study of surface properties of ‘semi-infinite’ solids. If
the disturbance created by the surface in the interior of the solid decays sufficiently fast
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with the distance from the surface, the straightforward solution is to use again the above
L x L x D geometry but maké so large that in the middle of the system bulk behaviour is
indeed recovered. This simple recipe works well for the study of surface critical phenomena
in Ising magnets (Landau and Binder 1990a, b), wetting phenomena (Bétaer1989),
surface-induced ordering and disordering in lattice models for metallic alloys (Scheteika

al 1996), etc. However, this approach does become cumbersome when large characteristic
lengths appear in the system, for example, at a temperature distance a few per cent below
the critical temperature of an Ising model a thicknéss= 160 lattice spacings may be
barely sufficient (Bindeet al 1989). The situation becomes particularly cumbersome when
the perturbation due to the surface decays with a power law of the distdnom the free
surface. This happens, for example, for Heisenberg ferromagnets (Binder and Hohenberg
1974) wherem(z — o0) — m(z) o« z L. In this case it was tried to work with one free
surface only and use the ‘self-consistent effective field’ boundary condition (SCFBC) at the
opposite wall to simulate ‘bulk’ behaviour there (Binder and Hohenberg 1974). SCFBC were
proposed (Miller-Krumbhaar and Binder 1972) as an alternative to the periodic boundary
condition for studying phase transitions in the bulk, the advantage being that the effective
field provides a symmetry breaking and wherr & one does not have a rounding off of

the transition but a crossover to a mean-field type transition. A popular variation of this
technique, where one analyses the change of these mean-field singularities when the linear
dimensionL is varied, is called the ‘Monte Carlo coherent anomaly method (MCCAM)’
(Katori and Suzuki 1987, Ito and Suzuki 1991).

The study of free surfaces is by no means restricted to the case of lattice models, of
course. Simulations of off-lattice models of solids with free surfaces can address problems
such as surface melting or faceting transitions (DiTellal 1996), surface reconstruction,
etc. We shall not discuss these issues here, since often molecular dynamics methods are
applied to these problems and anyway most of these studies are still in rather early stages.
In contrast, a problem that has been studied for a long time are the physical properties of
fluid droplets, where the surface area and shape of the droplet may fluctuate (egf. Lee
al 1973). This problem is of fundamental interest for a better understanding of nucleation
theory (Zettlemoyer 1969, 1977, Abraham 1974, Binder and Stauffer 1976). Of course,
in this case one usually confines the droplet in a box with repulsive walls, in order to
prevent atoms evaporating from the droplet and escaping far away from the cluster. While
such techniques seem to work well at low temperatures close to the triple point, where the
vapour pressure of the fluid is rather small, the technique becomes problematic at higher
temperatures, in particular near the critical point (Binder and Kalos 1980, Furukawa and
Binder 1982). One can then analyse this situation in terms of the equilibrium between
the fluid droplet and the surrounding gas that is also confined in the box, and analyse the
properties of the two subsystems (droplet, gas) separately (see also Binder and Stauffer
(1972) for an early study of lattice gas droplets). These concepts exemplify once more
that one can study arbitrarily defined subsystems in simulations which then exhibit in a
sense ‘fluctuating boundary conditions’: for example, using a division of a fluid in the
NVT ensemble int;: subsystems of volumes= V/n, particles can be exchanged freely
through the virtual ‘walls’ of the subsystem, and so density fluctuations are easily sampled
while in the total system the densigy= N/V is held fixed. Such techniques are useful
for both the study of liquid—gas transitions (Roveiteal 1988, 1990, 1993) and fluid—solid
transitions (Webeet al 1995). While these subsystems are defined such that their particle
number fluctuates but their volume and shape is fixed, in the study of fluid droplets one does
not fix size and shape of their volume but rather their number or their chemical potential,
respectively.
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Figure 17. Boundary conditions for a two-dimensional Ising system which lead to the formation
of an interface below the critical point. (a) Spins are fixed-atat the boundaries, as indicated.
Thick full curve denotes the positiom(y) of the (coarse-grained) interface between the
phases with negative and positive spontaneous magnetization. The.limitoo, M — oo is
considered. (b) Standard boundary conditions for the computer simulation of a system containing
an interface. Instead of fixed spins at the two free surfaces one may apply boundary fields of
opposite sign that stabilize the two phases. Note that the linear dimensionust satisfy

M > 2&, where¢ is the bulk correlation length of order parameter fluctuations. (c) Boundary
conditions of a reference system without an interface. (d) Finite system with periodic boundary
conditions in all directions and order parameter distributiprip) (schematic). Then, near an
order parametep = pmin, @ Minimum of P (p) develops, which corresponds to a situation with
two interfaces running parallel to a lattice direction through the system (left-hand side). These
interfaces separate the pure phases with order parametersand (o) corresponding to the
maxima of the distribution. From Binder (1982).

One is often also interested in studying the properties of flat interfaces between
coexisting phases. Typically one is interested in the ‘intrinsic’ profjle(x) of the order
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parameter distinguishing the phases, and the interfacial free efigrgyWwe now discuss the
boundary conditions that one is using in this context, using again the Ising ferromagnet as
an example. The boundary condition used in first principle work is a ‘fixed-spin’ boundary
condition, half of the boundary of a system of sizé~*M having spins fixed at-1 as
neighbours, the other half has spins fixed—dt, as indicated in figure 17(a). With this
boundary condition, the average position of the interface is precisely fixed, and so the
profile p(x) and the mean-square width

1 2\1/2
wq (L) =<[ = / dty xim<y)] >

are well defined. However, in this way one does not always obtain the ‘intrinsic’ profile
(which in fact is difficult to define in an unambigous way), because (above the interfacial
roughening transition temperatufg (Abraham 1986, van Beijeren and Nolden 1987)) the
interfacial profile is unstable against long-wavelength capillary wave excitations. Over a
length scalel these capillary waves give rise to an interfacial width of the order

w2_s(L) o % In(L/&) or w2_,(L) o L/ (136)

wherer is the ‘interfacial stiffness’. For = 2, Tr = 0 while in the three-dimensional
nearest-neighbour Ising modé&k ~ 2.4535//kg (Hasenbusch and Pinn 1997). Note that
for the liquid—gas interface or interfaces between different fluid phases we always have
Tr = 0 also ind = 3 dimensions and for such isotropic systems= fin/kgT, While «
exceedsfin/kgT in lattice systems where the interfacial tension in general depends on the
orientation of the interface (Van Beijeren and Nolden 1987, Moal 1989, Hasenbusch

and Pinn 1993).

The boundary condition of figure 17(a) is inconvenient for simulations and thus one
rather uses ‘fixed spins’ only in the boundaries parallel to the interface and periodic boundary
conditions in the other direction(s), figure 17(b) (Mon and Jasnow 1984). One sometimes
obtains the interfacial free energy by carrying out a simulation with boundary conditions
(++) on both surfaces (figure 17(c)), to sample the energy differenEe= E_, — E ,,
which is then attributed to the interface contribution. The interfacial free energy can then
be obtained fromA E(T) via thermodynamic integration. By related methods the interface
free energy of the Ising model has been found rather accurately (Mon 1988). One must not
forget, however, that interfacial profiles obtained from a geometry as in figure 17(b) (see
e.g. Leamyet al 1973) are not meaningful without a detailed discussion of how properties
do depend on the linear dimensiohsand M of the system. Even in the limit wherk
becomes very large one finds a strong dependence of the interfacial profile on the other linear
dimension in the direction perpendicular to the interface, see figure 18 (Kedke1996).
Similar size effects on interfacial profiles are also expected for off-lattice models. Often
there one chooses a geomelryx L x D with D > L and periodic boundary conditions
(pbc) throughout, starting from an initial configuration where a ‘slab’ of phase with order
parameterp, ) coexists with phases with order paramefer) both to the right and to the
left of the slab, so one records two interfacial profiles (e.g. Alejandre 1995a, b). In view
of these size effects, methods are somewhat problematic where one coryjpuiresn the
profile p(x) using suitable generalizations of van der Waals theory (Abrabbed 1974,

Rao and Levesque 1976). An alternative method uses the profile of the pressure tensor,
equation (72) Iy (x) = I ., 7 (x) = (I1,, + I1,,)/2, to compute the interfacial tension
from the formula (e.g. Rao and Berne 1978, Smit 1988)

Fint = / dr (My (x) — M7 () (137)
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Figure 18. The order parameter profile of the layer magnetizatignagainst layer number

of a nearest-neighbour Ising ferromagnet on the simple cubic latti@¥ Bf, = 0.9554, using
aL x L x D geometry with boundary fieldé/;/J = —0.55 at theL x L plane situated at

n =0, Hy/J =+0.55atn = D+ 1, andL = 128. Arrows show the values of the positive and
negative spontaneous magnetizatiei,. The table shows the values estimated for the width
w of the interface for the various thin film thicknessbs(all lengths being measured in units
of the lattice spacing). From Kerlet al (1996).

the integration again being extended over the region of the interfacial profile (in the
homogeneous phases the pressure is isotropic, of course, and Herieg = I17(x)).
Related formulae can also be used to obtain the surface free energy associated with walls
(e.g. Pandegt al 1997). We are not aware of any systematic investigation that size effects
have on equation (137), however.

For lattice systems such as Ising ferromagnets or antiferromagnets (Schmid and Binder
1992a, b) it often is convenient to use, instead of the boundary condition of figure 17(b), an
antiperiodic boundary condition (apbc). For example, for an Ising ferromagmiid, x L
geometry this meanS(x + D, y,z) = —S(x, y, z), with (x, y, z) being the coordinate of
the lattice sitef. Then any perturbation by walls or boundary fields is strictly avoided, but
a disadvantage is that this situation still has full translational invariance: the interface can
be anywhere in the system, and actually in the course of a Monte Carlo run will undergo a
diffusive motion. If one wants to estimate the interfacial energy only, this delocalization of
the interface does not matter; one simply has to obtain the free energy difference between
this system and a corresponding simulation with pfyg,= D[ Faphc— Fpnd (recalling that
F denotes a free energy per spin). For a study of interfacial profiles, one has to create a
second coordinate system, whose origin is fixed to the centre of the diffusing interface, and
record profiles in this frame (Schmid and Binder 1992a, b).
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If one is interested in the interfacial free energy only, a convenient method consists
in the sampling of how the minimum of the order parameter distribuitp(p) in between
{04}, (p_) decreases with increasing linear dimension (figure 17(d)). This technique (Binder
1982) is particularly convenient, since it yieldi: as a byproduct of a simulation of bulk
properties of the model system inI# geometry. This method relies on the fact that, for
L > &, the state of the system near the minimum is dominated by a configuration with
two (on the average flat) domain walls running parallel to each other and to a lattice plane
through the system. Therefore, one expects

Pr(p = pmin) o €XPA—2L" " fin/ ke T) (138)

because the excess free energy cost of the configuration sketched in figure 17(d) is given by
two interfaces of ared“~! each. The validity of equation (138) is checked by recording

P (p) for a wide range ofL, noting that the probability should, fat > &, be nearly
constant for a whole range pfaroundonmin, since changing then only changes the volume
fraction of the two coexisting phases, but not their interfacial contributions. However, since
Py (p) from (o), {p_) to pmin Varies over many orders of magnitude, one needs to apply
‘multicanonical’ sampling in order to reach sufficient accuracy (Berg and Neuhaus 1992,
Berget al 1993): after proper reweighting, an order parameter distribution which in between
(p—) and(p, ) is nearly flat is simulated. For the Ising magnet this so-called ‘multimagnetic’
(Hansmanret al 1992) sampling has yielded very precise interfacial free energies (Berg
et al 1993) and the critical vanishing ofi; near T, could be investigated. Even rather
complex systems such as models for polymer mixtures have been successfully studied with
this technique (Niller et al 1995).

5. Miscellaneous topics

5.1. Applications to dynamic phenomena

In section 3.4 we have already seen that Monte Carlo (MC) sampling can be interpreted as
a ‘time averaging’ along a stochastic trajectory through phase space, and this notion can
be made precise in terms of a Markovian master equation for the probab{li¥y, r) that

the system is in stat&X at timer (equation (47)). Of course, the dynamical properties

of a system described by such a stochastic trajectory differs in general from dynamic
properties derived from a deterministic trajectory: remember that the molecular dynamics
(MD) method amounts to solving Newton’s equation of motion numerically (Ciccotti and
Hoover 1986, Sprik 1996). In fact, for obtaining the dynamical properties of systems,
such as simple Lennard-Jones fluids, MD is the only reasonable approach, and while the
MC method is a perfectly valid approach for obtaining static properties of simple fluids in
thermal equilibrium, the relaxation of density fluctuations seen in a MC run has nothing to
do with the actual way that density fluctuations in fluids decay.

However, MC is a reasonable and useful method for describing dynamic properties of
systems where the considered degrees of freedom are a slow subset of all degrees of free-
dom. This slowness results from a weak coupling of these degrees of freedom to the fast
ones, which then act like a heat bath. A good example is the diffusion process in solid
alloys (figure 1), where the phonons of the crystal act like a heat bath. Suppose we would
simulate such a mixed crystal at low temperatures by MD—most of the computer effort
would be spent for simulating the lattice vibrations (which typically have a time constant
of 10712 s), while the time constant on which jumps of A atoms or B atoms to vacant sites
occur is orders of magnitude larger. It is easily possible then that in a MD run none (or only
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a few) such random jump events induced by the phonons are observed. While special MD
techniques exist to simulate the detailed properties of such rare events (Ciccotti and Ferrario
1996), and such techniques are clearly useful for estimating the jumpItatasdI'g for
specific materials, MD clearly is impractical to study the collective dynamic properties on
time scales large in comparison with the time scale of an isolated jurip, #ndI'g can

be assumed as given parameters, the MC method can straightforwardly simulate directly the
random hopping processes (Kettral 1989, Kehr and Binder 1984). The MC technique is
unique also for simulating slow non-equilibrium processes, which happen on macroscopic
time scales, such as the growth of ordered domains in adsorbed monolayers at surfaces
(e.g. Sadiqg and Binder 1984, Mouritsen 1990, Bray 1994), diffusion-limited growth of ag-
gregates (Herrmann 1986, Meakin 1988), simulations of the growth of thin solid films via
molecular beam expitaxy and related techniques (e.g. Family and Vicsek 1991, Landau and
Pal 1996) etc. While these examples all refer to cases where one wishes to understand real
systems in terms of crudely simplified coarse-grained models, there exist also models such
as the Glauber kinetic Ising model (Glauber 1963, Kawasaki 1972) where a master equation
description is postulated, not with the primary intention of describing any experimentally
accessible systems but rather to elucidate general questions of statistical mechanics. In this
context we recall that Ising magnets do not have any dynamics of their own—spin flips
are thought to result as a consequence of a weak spin lattice coupling. These kinetic Ising
models are of great interest to understand critical dynamics (Hohenberg and Halperin 1977)
and MC methods have been used extensively for their study (e.g.e5@lll1973, Landau

et al 1989). Of course, one can also identify problems where both MC and MD approaches
can be applied, for example, the slow Brownian motion of polymer chains in dense polymer
melts (Binder 1995, Kremer and Grest 1990, 1995, Raal 1991). The MC method then

has the advantage that unphysical ‘moves’ (crossing of chains, ‘slithering-snake’ motion,
semigrand-canonical AB interchanges in mixtures, etc) are permissible to equilibrate the
system: one may then set a clock to zero, at which point these unphysical moves are turned
off, in order to study the further time evolution of the system applying an algorithm that

is physically reasonable (e.g. the random hopping algorithm of the bond fluctuation model,
see Binder and Paul (1997) for a review). Of course, the MC dynamics does lack any hy-
drodynamic mechanisms which, in principle, are present in MD work. In addition, the MC
approach can model only diffusive motions and relaxation, but does not account for oscilla-
tory motions that are present in shorter time scales. Such limitations must be kept in mind in
the applications of MC methods to study the dynamics of polymers (Binder 1995) or other
slow processes: relaxation of the magnetization in spin glasses (Binder and Young 1986),
relaxation of molecular orientation in quadrupolar glasseag@i and Nielaba 1995), etc.

After this general overview we briefly treat one example in more detail, to illustrate the
great potential of the approach, and the type of questions that one can address: interdiffusion
in binary solid mixtures (figure 1). The considered degrees of freedom are occupation
variablesc?, ¢ of lattice sitesi which are unity if the site is taken by an A atom or a
B atom, respectively, and else zero. The phonons of the crystal then induce random hops
with jump rateslI’y andTI'g to vacant lattice sites.

We now recall the description of this problem in the framework of phenomenological
non-equilibrium thermodynamics: one postulates ‘constitutive equations’ for the current
densitiesJp, Jg of A, B atoms, namely linear relations between them and the driving
forces, the gradients of chemical potential differences between A(B) atoms and vacancies

V(ua — v, U — 1v),

Ja = —(Aaa/ksT)V(ua — v) — (Aps/ksT)V(up — py) (139)
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Jg = —(Aa/ksT)V(a — uv) — (Ags/ksT)V (s — pv). (140)

Here Aaa, Aag = Apa, Agg are the ‘Onsager coefficients’. Equations (139) and (140) are
at best approximately valid: nonlinearities and fluctuations are neglected. Taken together
with the continuity equations that express the conservation laws for the local concentrations

ca(r,t), cg(r,t)
dea(r,t)/ot +V - Jp =0 dcg(r, 1)/t +V -Jg =0 (142)

it is a matter of simple algebra (Kelet al 1989) to obtain a complete description of the
interdiffusion process for a random alloy. For example, the interdiffusion con&ant
which describes how a weak deviation of the concentration difference between A and B
from its average value spreads out, is given by

_ AmaAes — Al <1+1>
" Aaa +2Ans + Ags

— cy — 0. (142)
cA B
However, there are many questions about such a treatment: How are the Onsager
coefficients related to the atomistic ratEg, I's (figure 1)? Is the ‘mean-field’ character

of equations (139) and (140) an accurate description? Etc. In particular, it is common to
neglect the off-diagonal coefficiemtag (Brochardet al 1983, Krameret al 1984), since
nothing is known about it—but it is questionable whethgy; is really small in comparison

with Apn and Agp.

All these questions can be answered by ‘taylored’ computer experiments: by imposing
chemical potential gradients either on the A atoms or on the B atoms one can create
steady-state currents in the system (particles leaving the box at one boundary re-enter at the
opposite one, because of the periodic boundary conditons!). Thus the Onsager coefficients
can simply be measured from their definitions, equations (139) and (140). Figure 19 shows
that forT'a/T'g < 1 it is wrong to neglectag in comparison withl"as. However, using
the so-determined Onsager coefficients in equation (142) provides an accurate description
of interdiffusion, as figure 20 shows.

Figure 20 also illustrates again that basic concepts of statistical physics can be
implemented very directly in simulations, such as linear response: one applies a wavevector-
dependent chemical potential differentgu(k)(k = 27 /1) to the system, to prepare an
initial state of the model where a concentration wave with wavelenagih present. In
the example shown, the amplitude is chosen suchdhattr = 0) = dcg(r = 0) = 0.02.

At time ¢+ = 0, this perturbationA (k) is suddenly switched off, and then one simply
watches the decay of the concentration wave with time. Different wavelengths are used
(figure 20) to check that one is actually in the long-wavelength limit. While the full
mean-field treatment (equation (142)) based on the actual Onsager coefficients works well,
approximations (Brochardt al 1983, Krameret al 1984) where the Onsager coefficients

are somehow related to self-diffusion coefficients are not accurate in this case. Note that
self-diffusion coefficients are straightforwardly obtained from mean-square displacements
of tagged particles.

This is just one example out of many to show that MC simulations do have their place
to study dynamic phenomena. For more details, as well as a discussion of alternative
approaches such as MD and Brownian dynamics (Ermak and McCammon 1978, van
Gunstereret al 1981, Doll and Dion 1976, Ciccotti and Ryckaert 1980, 8t al 1985,

Lemak and Balabaev 1995) where one numerically solves Langevin equations, we have to
refer to the literature (Binder 1992b, Binder and Ciccotti 1996).
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Figure 20. Amplitudes of concentration waves with wavelengthas a function of time (in

units of Monte Carlo steps (MCS) per particle), after a chemical potential variation with the
same wavelength has been shut off at 0. Open circles represent A atoms, full dots B atoms,

for a lattice of L3 sites, withL = 80, cao = ¢g = 0.48,¢cy = 0.04,Ta/Tg = 0.1. Three
different wavelengths. are shown (the arrow indicates the initial concentration amplitude for

A = 40). Note that one must choose = L with v integer, to comply with the periodic
boundary conditions. The curves represent theoretical predictions, based on the use of actual
Onsager coefficients (cf figure 19) in a mean-field theory based on equations (139)—(141) (for
cy — 0 this theory predicts a single exponential decay proportional to-eRp{27/1)%] with

D; given by equation (142), while for non-zet®, ca(¢) andcg(r) decay with superpositions

of two exponentials). From Ketet al (1989).

5.2. A brief introduction to path integral Monte Carlo (PIMC) methods

So far the discussions of this paper have been confined to the framework of classical
statistical mechanics throughout. However, this is an approximation—the basic laws of
nature are quantum mechanical, and thus it is very important to be able to take quantum
effects into account in simulation techniques as well. Thus the development of MC
techniques to study ground-state as well as finite-temperature properties of interacting
guantum many-body systems is an active area of research (for reviews see Ceperley and
Kalos, 1979, Schmidt and Kalos 1984, Kalos 1984, De Raedt and Lagendijk 1985, Berne
and Thirumalai 1986, Suzuki 1986, 1992, Schmidt and Ceperley 1992, De Raedt and von
der Linden 1992, Hammonet al 1994, De Raedt 1996, Ceperley 1996, Kreer and Nielaba
1996, Gubernatis and Kawashima 1996). These methods are of interest for a widespread
variety of problems, including elementary particles (e.g. De Grand 1992), the structure of
atomic nuclei (e.g. Carlsson 1988), superfluidity of Helium (e.g. Schmidt and Ceperley
1992), high7; superconductors (e.g. Friokt al 1990), hydrogen in metals (Gillan and
Christodolous 1993), magnetism (e.g. Reger and Young 1988), surface physics (e.g. Marx
et al 1993ab, Kreer and Nielaba 1996) isotope effects in lattice dynamicséhMet al

1995) etc. Here we cannot attempt to review all these applications, nor can we describe
all the different techniques: variational Monte Carlo (VMC), Green’s function Monte Carlo
(GFMC), projector Monte Carlo (PMC), path-integral Monte Carlo (PIMC), grand-canonical
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guantum Monte Carlo (GCMC), world-line quantum Monte Carlo (WLQMC), etc. We note
that some of these techniques are still under development, and there are sometimes serious
problems hampering large-scale applications (such as the famous ‘minus sign problem’
hampering the applications to multifermion systems, see e.g. De Raedt and von der Linden
(1992)). Here we shall not address any methods for ground-state properties (like VMC,
GFMC), but are concerned with the PIMC method that only addresses properties at non-
zero temperatures.

Unlike equation (3) we now consider an average where the Hamiltoniar#{ is
treated as a quantum-mechanical operator, and we do not assume that the eigenvalues and
eigenstates oH are known explicitly,

(A) = (1/Z)Trexp(—H/ kg T) A Z =Trexp(—H/kgT). (143)

Here A is the operator associated with the classical observab) in equation (3). For
simplicity, we consider first a single particle in one dimension exposed to a poteHitia)
for which H = —(R?%/2m) #/dx? + V(x). In position representationx( is an eigenvector
of the position operator) the partition function becomes

Z = /dx<x|exp(—7%/kBT)|x>. (144)

Equation (144) is not straightforward to evaluate since the operators of kinetic energy
{—(r?/2m) d?/dx?} and potential energyV (x)} do not commute. Writing exp-H/kgT)
formally as [exg—7H/ksT P)]” , where P is a positive integer, we can insert a complete
set of states between the factors:

Z= /dxl.../dxp<x1|exp(—ﬂ/kBTP)|x2><x2|...|xp)<xp|exp(—7%/kBTP)|x1). (145)

For large P, it is a good approximation to ignore the fact that kinetic and potential energy
do not commute. Hence one gets

~ o (keTmP\"? —kgTmP 2
(x| exp(—H/ksT P)|x") =~ e W(x —x')
1 /
xexp{—ZkBTP[V(x)—i-V(x )]} (146)
and thus
kgTmP br2
Z:( 277:%2 ) /dxl dxp
11 e
xexpl — |2 k(rs —x510)?+ PHY_ Vixs) (147)
keT [ 2 & &

wherex = kgTmP/h?. In the limit P — oo, equation (147) becomes exact. Apart from
the prefactor, equation (147) is precisely the configurational partition function of a classical
system, namely a ring polymer consisting Bfbeads coupled by harmonic springs with
spring constank, each bead being under the action of a poteritial)/ P.

This approach is straightforwardly generalized to a systenV dhteracting quantum
particles—one ends up with a systemMfclassical cyclic ‘polymer chains’. However, an
important distinction from physical melts of ring polymers is that in the present case beads
of different chains interact with each other only if they are in the same ‘time slice’ (i.e.
have the same ‘Trotter index).
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As a result of this isomorphism, classical MC methods can be readily applied to sample
such quantum-mechanical problems. At high temperaturé®comes very large, and then
the system always behaves classically, since then the cyclic chains contract essentially to
point particles again. At low temperatures, however, they are spread out over distances
comparable to the thermal de Broglie wavelength, and in this way zero-point motions are
also accounted for. However, PIMC becomes increasingly difficult at low temperatures,
since P has to be the larger the low@t: if o is a characteristic distance over which the
potential V (x) changes, one must haveé/mo? <« kgT P in order that two neighbours
along the ‘polymer chain’ are at a distance much smaller #harirhe appropriate value
of this ‘Trotter dimension’P is determined empirically in most cases (typically one carries
out runs for several choices &f and checks where thermal properties no longer change).

The step leading to equation (146) can be viewed as a special case of the Suzuki—Trotter
formula (e.g. Suzuki 1986)

exp(A + B) = lim [exp(A/P) exp(B/P)]". (148)

Equation (148) is used for mapping-dimensional quantum problems on lattices to
equivalent classical problems i@ + 1) dimensions: for example, the Ising chain in a
transverse magnetic field gets mapped onto a special two-dimensional Ising lattice, with a
linear dimensionP in the additional ‘Trotter direction’ (which corresponds to the imaginary
time direction of the path integral).

For rigid molecules the operator of angular momentum appeafs im equation (144)
and this requires another extension of the formalism. The fact that a rotation with an angle
of 2 leaves the physical situation invariant creates subtle problems. For two-dimensional
rotators (confined to rotate in a plane) the rotation anglplays a similar role as the
coordinatex in equation (147), but in addition one has a summation over ‘winding numbers’
expressing the fact of how many multiples of 2he angle passes along the ring polymer
(Marx and Nielaba 1992, Maret al 1993b). Then in addition to ‘local’ Monte Carlo moves
s — ¢., which conserve the winding number, ‘global’ moves are also needed to change
the winding number. For rotators with two angular degrees of freedom one runs again into
‘minus sign’ problems (Marx 1994, Nser 1996)!

As an example for the type of questions that one can address, figure 21 shows the order
parameter and energy obMdsorbed on graphite (Maet al 1993a). It is seen that quantum
fluctuations depress the temperature of the order—disorder transition (which is rounded due
to finite-size effects, of course) by about 10%, and the order parameter saturates at 90% of
its classical value due to zero-point vibrations. While the latter behaviour is accounted for
by quasi-harmonic theory, and the former effect could be accounted for by the Feynman—
Hibbs approximation, there is in fact no approximate treatment accurate at temperatures
in the ordered phase just below the transition. Note that such simulations are still rather
difficult, since Trotter dimensions up tB = 500 needed to be used.

5.3. Some recent algorithmic developments

The availability of vector processors and of massively parallel supercomputers has made it
necessary to develop Monte Carlo codes that take advantage of this specialized hardware
and are optimized in order to perform on such machines as fast as possible (Landau 1992,
Heermann and Burkitt 1992, Heermann 1996). We shall not give any details on these
problems here. We only mention that one always heavily exploits the freedom that one has
in MC calculations (of static averages) in defining the precise order in which one carries out
updating operations in the configurations of the system. For example, for simulating Ising-
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Figure 21. Herringbone structure order parameter for &lsorbed on graphite plotted against
temperature. The centre of gravity of the 90@ Molecules is fixed in the plane where the
graphite potential (as parametrized by Steele (1978)) has its minimum on the regular sites
of a triangular lattice, allowing only for one rotational degree of freedgm per molecule.

Apart from the corrugation potential, nitrogen atoms interact with Lennard-Jones forces and
quadrupole—quadrupole interactions. Full curve, quantum simulation; dotted curve, classical
simulation; dashed curve, quasiharmonic theory; triangles, Feynman-Hibbs expansion around
classical path. The inset shows corresponding data for the energy. FromeMalr1993a).
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type lattice models on vector processors it is preferable not to go through the lattice sites in
the standard typewriter-type fashion, but rather to decompose the lattice in sublattices such
that the degrees of freedom on one sublattice do not interact with each other (for a nearest-
neighbour Ising square lattice, this is already achieved by the well known ‘checkerboard
decomposition’ into a ‘white’ and a ‘black’ sublattice, introduced by Oed (1982) for the
floating point system AP-190L and used for a study of the Ising model interfacial tension
(Binder 1982)). In combination with multispin coding (multiple spins of one system are
packed in a single word, as first suggested by Zziral (1981)) or multilattice simulations
(spins from 64 different lattices are packed into 64 bit words, see Bhetnak (1986))

very efficient algorithms result, as described in detail by Landau (1992). The principle of
this checkerboard algorithm, that degrees of freedom which lack a direct interaction can be
updated independently, is the basis of many related applications (e.g. spin-exchange kinetic
Ising models (Zhang 1989, Amat al 1988), random Ising models (Heuer 1990) or Potts
models (Eichhorn and Binder 1995, 1996), lattice models for alloyi¢izzg and Binder
1987), and polymer melts (Wittmann and Kremer 1990, 1992) etc).

At the time of writing, vector processors are losing ground in comparison to parallel
supercomputers. The concepts for efficient use of parallel processors are rather similar to
those used in ‘vectorization’ of programs—one has to identify tasks that can be carried
out independently and concurrently. A straightforward idea is ‘domain decomposition’, i.e.
the system is geometrically decomposed into subsystems. For systems with short-range
interactions, interactions between degrees of freedom belonging to different subsystems
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occur only in a rather narrow boundary region of each subsystem. If these subsystems are
themselves sufficiently large, the overhead for communication between processors can be
made sufficiently small in practice (Heermann and Burkitt 1992, Heermann 1996). Useful
applications result when the physics of the problem requires large total system sizes, for
example, interfaces in polymer mixtures were simulated on lattices containing about 16
million sites (Miller et al 1995), and simple Ising square lattices up to size &f:1a0°

could be studied (Linkeet al 1995, 1996). Of course, other strategies of parallelization
may be preferable for different applications: performing the MC approach with long-range
interactions, one may simply split the ensembleMofparticles intop portions of N/p
particles; each processor then calculates the energy change of one of these portions in an
MC update. Even simpler is a method that is sometimes called ‘poor man’s parallelization’
(Heermann 1996): the system is simply replicajedimes; each processor carries out

the same program but with different random numbers (and perhaps also with a different
starting configuration), and so the only communication among processors that is needed is
the averaging of the results from individual processors in order to obtain the final results.
This approach is very natural for systems containing randomly quenched disorder (Eichhorn
and Binder 1995): one has to carry out the averagd,], over the quenched disorder by
averaging over a large number of equivalent replicas of the system, each containing a
different realization of the variables characterizing the quenched disorder (random bonds,
random fields, randomly diluted sites, etc); thus this disorder average is done in parallel,
each processor working on its own replica of the system.

Another very important line of research on Monte Carlo algorithms considers the
construction of clever moves for the MC updates in order to sample the phase space most
efficiently, i.e. to decorrelate successive configurations as fast as possible. For example, for
the Ising model at the critical temperatufgthe standard single spin-flip algorithm suffers
from the problem of ‘critical slowing down’ (Hohenberg and Halperin 1977), which means
in a finite-size scaling context that the relaxation timscales with the linear dimension
like T o« L%, z being the ‘dynamic exponent’ of the model & 2). Many ideas have
been followed to ease this problem: Fourier acceleration (e.g. Bated@hil985, Dagotto
and Kogut 1987), multigrid MC (Goodman and Sokal 1986, 1989, Kaetlell 1989,
Hasenbusctlet al 1991, Janke and Sauer 1994, 1995), over-relaxation (Creutz 1987) etc.
The most successful approach seems to be the cluster algorithms (Swendsen and Wang 1987,
Wolff 1988a, b, Wolff 1989a, b, c, Edwards and Sokal 1988, 1989, Bert/al 1990, Wang
et al 1990, Kandel and Domany 1991, Swends¢ml 1992, Machtaet al 1995, Liverpool
and Glotzer 1996, Luijten and 8fe 1996) based on the mapping (Fortuin and Kasteleyn
1972) between Potts models and percolation (see section 4.2). For ferromagnetic Ising, Potts,
and vectorspin models these algorithms reduce the dynamic expoteatvery small value
(in favourable cases = 0, e.g. for the single cluster algorithm (Wolff 1989a)dn> 4
dimensions, see Tamayat al (1990)). While extensions exist to antiferromagnetic Potts
models (Wangpt al 1990), interfaces in solid-on-solid models and Ising models (Hasenbusch
and Meyer 1991, Hasenbusch and Pinn 1997), and quantum MC problems (Gubernatis and
Kawashima 1996), so far this approach could not be generalized to off-lattice problems, and
also many lattice problems involving frustration (spinglasses, lattice gauge problems, etc)
still await the formulation of a useful cluster algorithm.

A very promising approach also is the combination of cluster algorithms with
other advanced methods, for example, with multigrid MC (Kanetehl 1989) or with
multicanonical sampling (the so-called ‘multibondic algorithm’ (Janke and Kappler 1995)).

A recently developed method that works both for lattice and off-lattice problems and
has interesting parallels to cluster algorithms (Frenkel 1993) is the so-called ‘configurational
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bias Monte Carlo’ (CBMC) method (Siepmann 1990, Siepmann and Frenkel 1992, de Pablo
et al 1992). This method was originally invented for macromolecules but is presumably
useful for many other problems (see Frenkel (1993) and Frenkel and Smit (1996) for more
details).

While in the techniques mentioned above the dynamics of the Monte Carlo ‘cluster
moves’ clearly is unphysical, and there is no connection in an Ising simulation using a
cluster algorithm with the dynamics of a single spin-flip algorithm, techniques have also
been developed (e.g. use of absorbing Markov chains (Novotny 1995) or rescaling techniques
inspired by the renormalization group ideas, see Barkema and Marko (1993)). For studying
nucleation kinetics in Ising models at low temperatures or the dynamics of coarsening in the
simulation of quenching experiments one can observe dynamic processes over 25 decades
in time—a task that would be impossible for straightforward dynamic MC techniques.

Finally we mention the reweighting techniques (se@ndeg (1996) and Frenkel and
Smit (1996) for recent reviews). The ‘single histogram method’ starts from the observation
that the energy distribution at temperatdiean be obtained from the distributidh(E, Ty)
at a neighbouring temperatufg by

P(E,T) = P(E, To) exp[-(1/T — 1/To)E/kB]/ Y (E, To)exp[—(1/T — 1/ To) E/ k].
E

(149)

This idea is not at all new (Salsburg al 1959) but has only recently been very widely
used—first of all one can now generate ‘histograsE, Tp) with the necessary statistical
accuracy, which was not possible in the early days of Monte Carlo, and second it was
recognized by Ferrenberg and Swendsen (1988) that at a critical point the width of the
distribution due to critical fluctuations is sufficiently broadened to allow a reweighting over
the temperature intervall’ — T¢| of order L=, i.e. the region of interest for a finite-
size scaling analysis, irrespective of the linear dimendionin particular, the combined
use of several histograms at suitably chosen neighbouring temperatures (or other control
parameters), the so-called ‘multiple histogram extrapolation’ (Ferrenberg and Swendsen
1989, Swendseat al 1992) has become a standard tool in the study of critical phenomena.
We emphasize that one can perform a reweighting in several parameters simultaneously (e.g.
temperature and chemical potential, in a study of criticality in fluids, see Wilding (1996)).
Reweighting densities is also possible and is called ‘density scaling’ (Valleau 1993).
Particularly useful are also reweighting schemes built into the simulation procedure
(‘'umbrella sampling’ (Valleau and Torrie 1977), ‘multicanonical MC’ techniques (Berg and
Neuhaus 1992), ‘entropic sampling’ (Lee 1993), the ‘broad histogram method’ (de Oliveira
et al 1996) etc). Basically, one is sampling the states not with the Boltzmann probability
(o exp(—H /kgT)) but with a modified probabilityd exp(—Hest/ kg T)). This will produce
an energy distribution

P(E) = expIS(E) ~ Hon/kaT] | Y explS(E) ~ HanfhaT].  (150)
E

The optimal choice would be iP(E) were flat, i.e. ifHex/kgT is just the entropy (apart
from an additive constant). Thus one could proceed in an iterative way, choosing first
Hé?f) = E/kgTp for some reasonabl&, estimatingP (E) via a histogram, and then using
H;%? = é?f) +In(P(E)R), R being the total number of energy entries, etc. Of course, one
must be very careful that the runs are long enough so B{at) is reliably estimated. In

the end, thermal averages of observableare then obtained as
(A)r = (A expl(Hett — H)ksT])/(eXpl(Hert — H)/keT]). (151)
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Such techniques are particularly useful to study first-order transitions, and to obtain
interfacial tensions between coexisting phases, as discussed in section 4.4.

A related approach (‘simulated tempering’ (Marinari and Parisi 1992), ‘expanded
ensemble’ (Lyubartsegt al 1992)) considers the temperature just as an additional degree of
freedom, specifying properly transition rules for jumping from one temperature to another.

Clearly, all we could give here was a sketchy guide to the original literature in a rapidly
developing and very promising field! But it is clear that algorithmic developments are as
important as improvements in the computer performance for the growing impact of Monte
Carlo simulation in statistical physics.

6. A few concluding remarks

In this review, we have attempted to provide an introductory and tutorial overview of Monte
Carlo simulation, primarily addressed to the non-specialist. Thus we have given the basic
aspects of the technique in some detail, and we have also described in some depth the
finite-size effects, which, on the one hand, seriously hamper all simulation work, but, on
the other, can also be used as a tool for extracting quantitatively reliable predictions on bulk
and interfacial properties, via the appropriate finite-size scaling considerations.

In presenting these points, we have chosen to illustrate them with material exclusively
taken from the research group of the author. It must be stressed that this choice of examples
was purely a matter of convenience only, and it should be clear from the extensive list
of references that many groups have contributed very significantly to the development of
techniques that were described here. Thus the bias in the choice of examples should not be
at all mistaken as a statement on the validity and/or importance of other results.

In this review, we have also chosen to emphasize classical MC work on equilibrium
properties of lattice models, and have dealt only very briefly with topics such as the
statistical mechanics of off-lattice models, non-equilibrium phenomena such as simulations
of irreversible growth, and quantum problems in statistical thermodynamics. Thus we have
only tried to give the reader a flavour of what can be done and what new problems arise
when one applies MC methods in these fields. The same disclaimer holds with respect
to the many clever algorithms that have been devised to carry out simulations in a more
efficient way—we only intended to ‘wet the readers appetite’ to the rich literature on all
these interesting problems and approaches.

Nevertheless, we hope that this review can give a clear hint to the usefulness of these
computer simulation methods, and the challenge they pose in their proper application and
their use as a powerful tool of research. Also, with respect to the technical aspects of this
‘tool’, it is clear that this review could only describe ‘work in progress’, so there is still
much room for good ideas for the further refinement of the technique and for developing
applications to new problems, and thus one can understand the fascination that the computer
simulation approach has, leading to a truly explosive growth of the literature in this area.
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