**Rectification and Fluctuations of
granular tracers**

** **

Marini Bettolo Marconi, U.^{1}

^{1}University
of Camerino, Italy

We consider a massive inelastic piston, whose opposite faces have different coefficients of restitution, moving under the action of an infinitely dilute gas of hard disks maintained at a fixed temperature. The dynamics of the piston is Markovian and obeys a continuous Master Equation: however, the asymmetry of restitution coefficients induces a violation of detailed balance and a net drift of the piston, as in a Brownian ratchet. Numerical investigations of such non-equilibrium stationary state show that the velocity fluctuations of the piston are symmetric around the mean value only in the limit of large piston mass, while they are strongly asymmetric in the opposite limit. Only taking into account such an asymmetry, i.e. including a third parameter in addition to the mean and the variance of the velocity distribution, it is possible to obtain a satisfactory analytical prediction for the ratchet drift velocity.